iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-08123-6_14
Reservoir Computing Approach to Robust Computation Using Unreliable Nanoscale Networks | SpringerLink
Skip to main content

Reservoir Computing Approach to Robust Computation Using Unreliable Nanoscale Networks

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

As we approach the physical limits of CMOS technology, advances in materials science and nanotechnology are making available a variety of unconventional computing substrates that can potentially replace top-down-designed silicon-based computing devices. Inherent stochasticity in the fabrication process and nanometer scale of these substrates inevitably lead to design variations, defects, faults, and noise in the resulting devices. A key challenge is how to harness such devices to perform robust computation. We propose reservoir computing as a solution. In reservoir computing, computation takes place by translating the dynamics of an excited medium, called a reservoir, into a desired output. This approach eliminates the need for external control and redundancy, and the programming is done using a closed-form regression problem on the output, which also allows concurrent programming using a single device. Using a theoretical model, we show that both regular and irregular reservoirs are intrinsically robust to structural noise as they perform computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haselman, M., Hauck, S.: The future of integrated circuits: A survey of nanoelectronics. Proceedings of the IEEE 98(1), 11–38 (2010)

    Article  Google Scholar 

  2. Chen, Y., Jung, G.Y., Ohlberg, D.A.A., Li, X., Stewart, D.R., Jeppesen, J.O., Nielsen, K.A., Stoddart, J.F., Williams, R.S.: Nanoscale molecular-switch crossbar circuits. Nanotechnology 14(4), 462 (2003)

    Article  Google Scholar 

  3. Snider, G.: Computing with hysteretic resistor crossbars. Appl. Phys. A 80, 1165–1172 (2005)

    Article  Google Scholar 

  4. Xu, P., Jeon, S.H., Chen, H.T., Luo, H., Zou, G., Jia, Q., Marian, T.C., Williams, D.J., Zhang, B., Han, X., Wang, H.L.: Facile synthesis and electrical properties of silver wires through chemical reduction by polyaniline. The Journal of Physical Chemistry C 114(50), 22147–22154 (2010)

    Article  Google Scholar 

  5. Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Aono, M., Gimzewski, J.K.: Emergent criticality in complex Turing B-type atomic switch networks. Advanced Materials 24(2), 286–293 (2012)

    Article  Google Scholar 

  6. Semiconductor Industry Association: International technology roadmap for semiconductors, ITRS (2011), http://www.itrs.net/Links/2011ITRS/

  7. Schmid, A., Leblebici, Y.: A modular approach for reliable nanoelectronic and very-deep submicron circuit design based on analog neural network principles. In: Proc. IEEE-NANO, pp. 647–650 (2003)

    Google Scholar 

  8. Žaloudek, L., Sekanina, L.: Cellular automata-based systems with fault-tolerance. Natural Computing 11(4), 673–685 (2012)

    Article  MathSciNet  Google Scholar 

  9. Tran, A.H., Yanushkevich, S., Lyshevski, S., Shmerko, V.: Design of neuromorphic logic networks and fault-tolerant computing. In: Proc. IEEE-NANO, pp. 457–462 (2011)

    Google Scholar 

  10. Zhang, W., Wu, N.J.: CMOL-based cellular neural networks and parallel processor for future image processing. In: Proc. IEEE-NANO, pp. 737–740 (2008)

    Google Scholar 

  11. Lawson, J.W., Wolpert, D.H.: Adaptive programming of unconventional nano-architectures. Journal of Computational and Theoretical Nanoscience 3(2), 272–279 (2006)

    Google Scholar 

  12. Anghel, M., Teuscher, C., Wang, H.L.: Adaptive learning in random linear nanoscale networks. In: Proc. IEEE-NANO, pp. 445–450 (2011)

    Google Scholar 

  13. Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. KI - Künstliche Intelligenz 26(4), 365–371 (2012)

    Article  Google Scholar 

  14. Hermans, M., Schrauwen, B.: Recurrent kernel machines: Computing with infinite echo state networks. Neural Computation 24(1), 104–133 (2011)

    Article  MathSciNet  Google Scholar 

  15. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)

    Article  Google Scholar 

  16. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Networks 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  17. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  18. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Technical Report GMD Rep. 148, St. Augustin. German National Research Center for Information Technology (2001)

    Google Scholar 

  19. Wyffels, F., Schrauwen, B.: A comparative study of reservoir computing strategies for ly time series prediction. Neurocomputing 73(10-12), 1958–1964 (2010)

    Article  Google Scholar 

  20. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  21. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., Massar, S.: Optoelectronic reservoir computing. Scientific Reports 2 (2012)

    Google Scholar 

  22. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: NIPS, pp. 593–600 (2002)

    Google Scholar 

  23. Dasgupta, S., Wörgötter, F., Manoonpong, P.: Information theoretic self-organised adaptation in reservoirs for temporal memory tasks. In: Jayne, C., Yue, S., Iliadis, L. (eds.) EANN 2012. CCIS, vol. 311, pp. 31–40. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Jaeger, H.: Short term memory in echo state networks. Technical Report GMD Report 152. GMD-Forschungszentrum Informationstechnik (2002)

    Google Scholar 

  25. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach. Technical Report GMD Report 159. German National Research Center for Information Technology, St. Augustin-Germany (2002)

    Google Scholar 

  26. Penrose, R.: A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society 51, 406–413 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rodan, A., Tiňo, P.: Minimum complexity echo state network. IEEE Transactions on Neural Networks 22, 131–144 (2011)

    Article  Google Scholar 

  28. Atiya, A., Parlos, A.: New results on recurrent network training: Unifying the algorithms and accelerating convergence. IEEE Transactions on Neural Networks 11, 697–709 (2000)

    Article  Google Scholar 

  29. Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)

    MATH  MathSciNet  Google Scholar 

  30. Sarangi, S., Greskamp, B., Teodorescu, R., Nakano, J., Tiwari, A., Torrellas, J.: VARIUS: A model of process variation and resulting timing errors for microarchitects. IEEE Transactions on Semiconductor Manufacturing 21(1), 3–13 (2008)

    Article  Google Scholar 

  31. Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature 433(7021), 47–50 (2005)

    Article  Google Scholar 

  32. Sillin, H.O., Aguilera, R., Shieh, H.H., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24(38), 384004 (2013)

    Article  Google Scholar 

  33. Ozturk, M.C., Xu, D., Príncipe, J.C.: Analysis and design of echo state networks. Neural Computation 19(1), 111–138 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Goudarzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Goudarzi, A., Lakin, M.R., Stefanovic, D. (2014). Reservoir Computing Approach to Robust Computation Using Unreliable Nanoscale Networks. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics