iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-07956-1_24
On P 3-Convexity of Graphs with Bounded Degree | SpringerLink
Skip to main content

On P 3-Convexity of Graphs with Bounded Degree

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8546))

Included in the following conference series:

  • 759 Accesses

Abstract

Motivated by the large applicability as well as the hardness of P 3-convexity, we study new complexity aspects of such convexity restricted to graphs with bounded maximum degree. More specifically, we are interested in identifying either a minimum P 3-geodetic set or a minimum P 3-hull set of such graphs, from which the whole vertex set of G is obtained either after one or sufficiently many iterations, respectively. Each iteration adds to a set S all vertices of V(G) ∖ S with at least two neighbors in S. We prove that: (i) a minimum P 3-hull set of a graph G can be found in polynomial time when \(\delta(G)\geq \frac{n(G)}{c}\) (for some constant c); (ii) deciding if the size of a minimum P 3-hull set of a graph is at most k remains NP-complete even on planar graphs with maximum degree four; (iii) a minimum P 3-hull set of a cubic graph can be found in polynomial time; (iv) a minimum P 3-hull set can be found in polynomial time in graphs with minimum feedback vertex set of bounded size and no vertex of degree two; (v) deciding if the size of a minimum P 3-geodetic set of a planar graph with maximum degree three is at most k remains NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balister, P., Bollobás, B., Johnson, J.R., Walters, M.: Random majority percolation. Random Struct. Algorithms 36, 315–340 (2010)

    Article  MATH  Google Scholar 

  2. Balogh, J., Bollobás, B.: Sharp thresholds in Bootstrap percolation. Physica A 326, 305–312 (2003)

    Article  MATH  Google Scholar 

  3. Bermond, J.-C., Bond, J., Peleg, D., Perennes, S.: The power of small coalitions in graphs. Discrete Appl. Math. 127, 399–414 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible conversion of graphs. Theor. Comput. Sci. 412, 3693–3700 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Centeno, C.C., Penso, L.D., Rautenbach, D., de Sá, V.G.P.: Immediate versus eventual conversion: comparing geodetic and hull numbers in P3-convexity. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 262–273. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157, 1615–1627 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd Ann. ACM Symp. on Theory of Computing Machinery, New York, pp. 151–158 (1971)

    Google Scholar 

  8. Hansberg, A., Volkmann, L.: On graphs with equal domination and 2-domination numbers. Discrete Mathematics 308(11), 2277–2281 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman, N.York (1979)

    MATH  Google Scholar 

  10. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker (1998)

    Google Scholar 

  11. DeLaVina, E., Goddard, W., Henning, M.A., Pepper, R., Vaughan, E.R.: Bounds on the k-domination number of a graph. Applied Mathematics Letters 24(6), 996–998 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hansberg, A., Volkmann, L.: On 2-domination and independence domination numbers of graphs. Ars Combinatoria 101, 405–415 (2011)

    MATH  MathSciNet  Google Scholar 

  13. Centeno, C.C., Penso, L.D., Rautenbach, D., de Sà, V.G.P.: Geodetic Number versus Hull Number in P 3-Convexity. SIAM Journal on Discrete Mathematics 27(2), 717–731 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lichtenstein, D.: Planar satisfiability and its uses. SIAM Journal on Computing 11, 329–343 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Mathematics 72(1-3), 355–360 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Draque Penso, L., Protti, F., Rautenbach, D., Souza, U.S. (2014). On P 3-Convexity of Graphs with Bounded Degree. In: Gu, Q., Hell, P., Yang, B. (eds) Algorithmic Aspects in Information and Management. AAIM 2014. Lecture Notes in Computer Science, vol 8546. Springer, Cham. https://doi.org/10.1007/978-3-319-07956-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07956-1_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07955-4

  • Online ISBN: 978-3-319-07956-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics