Abstract
Paper presents the most important problems connected with Jiles-Atherton model of magnetic B(H) hysteresis. These problems are mainly caused by accuracy of numerical integration as well as methods of solving the ordinary differential equations. Paper presents comparison of accuracy of calculation with MATLAB and OCTAVE for both Windows 7 and Scientific Linux 6.3. Moreover, the analyse of time efficiency is presented. On the base of numerical errors analyses and benchmarking, the guidelines for calculation of Jiles-Atherton model are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jiles, D.C., Atherton, D.: Theory of ferromagnetic hysteresis. Journal of Applied Physics 55, 2115 (1984)
Jiles, D.C., Atherton, D.: Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials 61, 48 (1986)
Venkataraman, R., Krishnaprasad, P.: Qualitative analysis of a bulk ferromagnetic hysteresis model. In: Proceedings of the 37th IEEE Conference on Decision and Control, p. 2443 (1998)
Szewczyk, R.: Modelling of the magnetic and magnetostrictive properties of high permeability Mn-Zn ferrites. PRAMANA-Journal of Physics 67, 1165–1171 (2006)
Chwastek, K., Szczyglowski, J.: Estimation methods for the Jiles-Atherton model parameters – a review. Electrical Review (Przeglad Elektrotechniczny) 84, 145 (2008)
Pop, N., Caltun, O.: Jiles-Atherton model used in the magnetization process study for the composite magnetoelectric materials based on cobalt ferrite and barium titanate. Canadian Journal of Physics 89, 787 (2011)
Baghel, A., Kulkarni, S.: Hysteresis modeling of the grain-oriented laminations with inclusion of crystalline and textured structure in a modified Jiles-Atherton model. Journal of Applied Physics 113, 043908 (2013)
Stoklosa, Z., Rasek, J., Kwapulinski, P.: Magnetic, electrical and plastic properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9 and Fe75Cu1Nb2Si13B9 amorphous alloys. Journal of Alloys and Compounds 509, 9050 (2011)
Bienkowski, A., Szewczyk, R., Kolano, R.: Influence of thermal treatment on magnetoelastic Villari effect in Fe78Si13B9 amorphous alloy. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 375, 1024–1026 (2004)
Hamimid, M., Mimoune, S., Feliachi, M.: Evaluation of minor hysteresis loops using Langevin transforms in modified inverse Jiles-Atherton model. Physica B-Condensed Matter 429, 115 (2013)
Jackiewicz, D., Szewczyk, R., Salach, J.: Modelowanie charakterystyk magnesowania stali konstrukcyjnych. Pomiary Automatyka Robotyka 2, 552 (2012)
Andrei, P., Dimian, M.: Clockwise Jiles-Atherton Hysteresis Model. IEEE Transactions on Magnetics 49, 3183 (2013)
Pop, N.C., Caltun, O.F.: Using the Jiles Atherton model to analyze the magnetic properties of magnetoelectric materials (BaTiO3)(x) (CoFe2O4)(1-x). Indian Journal of Physics 86, 283–289 (2012)
Gorecki, K., Detka, K.: Electrothermal model of choking-coils for the analysis of dc-dc converters. Materials Science and Engineering B-Advanced Functional Solid-State Materials 177, 1248 (2012)
Raghunathan, A., Klimczyk, P., Melikhov, Y.: Application of Jiles-Atherton Model to Stress Induced Magnetic Two-Phase Hysteresis. IEEE Transactions on Magnetics 49, 3187 (2013)
Jiles, D.C.: Introduction to Magnetism and Magnetic Materials. Chapman and Hall, London (1998)
Ramesh, A., Jiles, D.C., Bi, Y.: Generalization of hysteresis modeling to anisotropic materials. Journal of Applied Physics 81, 5585 (1997)
Ramesh, A., Jiles, D., Roderik, J.: A model of anisotropic anhysteretic magnetization. IEEE Transactions on Magnetics 32, 4234 (1996)
Chwastek, K., Szczygłowski, J.: Identification of a hysteresis model parameters with genetic algorithms. Mathematics and Computers in Simulation 71, 206 (2006)
Davidson, R., Charap, S.: Combined vector hysteresis models and applications. IEEE Transactions on Magnetics 32, 4198 (1996)
Tellini, B., Giannetti, R., Lizon-Martinez, S., Marracci, M.: Characterization of the Accommodation Effect in Soft Hysteretic Materials via Sensorless Measurement Technique. IEEE Transactions on Instrumentation and Measurement 58, 2807 (2009)
Della Torre, E.: A Preisach model for accommodation. IEEE Transactions on Magnetics 30, 2701 (1994)
Shampine, L.F.: Vectorized Adaptive Quadrature in MATLAB. Journal of Computational and Applied Mathematics 211, 131 (2008)
Calkins, F., Smith, R., Flatau, A.: Energy-based hysteresis model for magnetostrictive transducers. IEEE Transactions on Magnetics 36, 429 (2000)
Szewczyk, R.: Modelling of the magnetic and magnetostrictive properties of high permeability Mn-Zn ferrites. J. of Physics 67(6), 1165–1171 (2006)
Szewczyk, R., Bienkowski, A.: Magnetoelastic Villari effect in high-permeability Mn-Zn ferrites and modeling of this effect. In: Conference: 15th International Symposium on Soft Magnetic Materials (2001); J. of Magnetism and Magnetic Materials 254, SI 284– SI 286 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Szewczyk, R. (2014). Computational Problems Connected with Jiles-Atherton Model of Magnetic Hysteresis. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Recent Advances in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-319-05353-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-05353-0_27
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05352-3
Online ISBN: 978-3-319-05353-0
eBook Packages: EngineeringEngineering (R0)