iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-03680-9_17
Image Segmentation with Adaptive Sparse Grids | SpringerLink
Skip to main content

Image Segmentation with Adaptive Sparse Grids

  • Conference paper
AI 2013: Advances in Artificial Intelligence (AI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8272))

Included in the following conference series:

  • 2657 Accesses

Abstract

We present a novel adaptive sparse grid method for unsupervised image segmentation. The method is based on spectral clustering. The use of adaptive sparse grids achieves that the dimensions of the involved eigensystem do not depend on the number of pixels. In contrast to classical spectral clustering, our sparse-grid variant is therefore able to segment larger images. We evaluate the method on real-world images from the Berkeley Segmentation Dataset. The results indicate that images with 150,000 pixels can be segmented by solving an eigenvalue system of dimensions 500 × 500 instead of 150, 000 × 150, 000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proceedings of the 2001 IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  2. Peherstorfer, B., Pflüger, D., Bungartz, H.-J.: A Sparse-Grid-Based Out-of-Sample Extension for Dimensionality Reduction and Clustering with Laplacian Eigenmaps. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS, vol. 7106, pp. 112–121. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. von Luxburg, U.: A Tutorial on Spectral Clustering. Statistics and Computing 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  4. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral Grouping Using the Nystrom Method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 214–225 (2004)

    Article  Google Scholar 

  5. Alzate, C., Suykens, J.A.K.: Multiway Spectral Clustering with Out-of-Sample Extensions through Weighted Kernel PCA. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(2), 335–347 (2010)

    Article  Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  7. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  8. Pflüger, D.: Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut, München (August 2010)

    Google Scholar 

  9. Bengio, Y., Paiement, J.F., Vincent, P.: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In: Advances in Neural Information Processing Systems, pp. 177–184. MIT Press (2003)

    Google Scholar 

  10. Wu, X.: Efficient Statistical Computations for Optimal Color Quantization. In: Arvo, J. (ed.) Graphics Gems II, pp. 126–133. Academic Press (1991)

    Google Scholar 

  11. Adorf, J.: Nonlinear Clustering on Sparse Grids. Studienarbeit/SEP/IDP, Institut für Informatik, Technische Universität München (August 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Peherstorfer, B., Adorf, J., Pflüger, D., Bungartz, HJ. (2013). Image Segmentation with Adaptive Sparse Grids. In: Cranefield, S., Nayak, A. (eds) AI 2013: Advances in Artificial Intelligence. AI 2013. Lecture Notes in Computer Science(), vol 8272. Springer, Cham. https://doi.org/10.1007/978-3-319-03680-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03680-9_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03679-3

  • Online ISBN: 978-3-319-03680-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics