iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-03680-9_1
A Logical Framework of Bargaining with Integrity Constraints | SpringerLink
Skip to main content

A Logical Framework of Bargaining with Integrity Constraints

  • Conference paper
AI 2013: Advances in Artificial Intelligence (AI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8272))

Included in the following conference series:

Abstract

This paper proposes a logical framework for bargaining with integrity constraints (IC) in multi-agent and multi-issue bargaining environments. We construct a simultaneous concession solution for bargaining games under IC, and show that the solution is uniquely characterised by a set of logical properties. In addition, we prove that the solution also satisfies the most fundamental game theoretic properties such as symmetry and Pareto optimality. Finally, we discuss the relationship between merging operators and bargaining solutions under integrity constraints.

This paper is partly supported by the International Exchange Program Fund of 985 Project and Bairen Plan of Sun Yat-sen University, China and the Australian Research Council through Discovery Project DP0988750.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. John, F., Nash, J.: The bargaining problem. Econometrica 18(2), 155–162 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Binmore, K., Rubinstein, A., Wolinsky, A.: The Nash bargaining solution in economic modelling. The RAND Journal of Economics, 176–188 (1986)

    Google Scholar 

  3. Shubik, M.: Game theory in the social sciences: Concepts and solutions. MIT Press (2006)

    Google Scholar 

  4. Raiffa, H.: The Art and Science of Negotiation. Harvard University Press (1982)

    Google Scholar 

  5. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.: Automated negotiation: prospects, methods and challenges. Group Decision and Negotiation 10(2), 199–215 (2001)

    Article  Google Scholar 

  6. Fatima, S.S., Wooldridge, M., Jennings, N.R.: An agenda-based framework for multi-issue negotiation. Artificial Intelligence 152(1), 1–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, D.: A logic-based axiomatic model of bargaining. Artificial Intelligence 174(16-17), 1307–1322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kraus, S., Sycara, K., Evenchik, A.: Reaching agreements through argumentation: a logical model and implementation. Artificial Intelligence 104, 1–69 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by arguing. Journal of Logic and Computation 8(3), 261–292 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, X., Jennings, N.R., Shadbolt, N., Leung, H.F., Lee, J.H.M.: A fuzzy constraint based model for bilateral, multi-issue negotiations in semi-competitive environments. Artificial Intelligence 148(1), 53–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, D., Zhang, Y.: An ordinal bargaining solution with fixed-point property. Journal of Artificial Intelligence Research 33(1), 433–464 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Zhan, J., Luo, X., Sim, K.M., Feng, C., Zhang, Y.: A fuzzy logic based model of a bargaining game. In: Wang, M. (ed.) KSEM 2013. LNCS, vol. 8041, pp. 387–403. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Konieczny, S., Pérez, R.P.: Merging information under constraints: a logical framework. Journal of Logic and Computation 12(5), 773–808 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, D., Foo, N.: Infinitary belief revision. Journal of Philosophical Logic 30(6), 525–570 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, J., Mendelzon, A.O.: Merging databases under constraints. International Journal of Cooperative Information Systems 7(01), 55–76 (1998)

    Article  Google Scholar 

  16. Konieczny, S., Pino-Pérez, R.: On the logic of merging. In: KR 1998: Principles of Knowledge Representation and Reasoning, pp. 488–498. Morgan Kaufmann (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Jing, X., Zhang, D., Luo, X. (2013). A Logical Framework of Bargaining with Integrity Constraints. In: Cranefield, S., Nayak, A. (eds) AI 2013: Advances in Artificial Intelligence. AI 2013. Lecture Notes in Computer Science(), vol 8272. Springer, Cham. https://doi.org/10.1007/978-3-319-03680-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03680-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03679-3

  • Online ISBN: 978-3-319-03680-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics