Abstract
Instructional videos are a common source for learning text-video or even multimodal representations by leveraging subtitles extracted with automatic speech recognition systems (ASR) from the audio signal in the videos. However, in contrast to human-annotated captions, both speech and subtitles naturally differ from the visual content of the videos and thus provide only noisy supervision. As a result, large-scale annotation-free web video training data remains sub-optimal for training text-video models. In this work, we propose to leverage the capabilities of large language models (LLMs) to obtain high-quality video descriptions aligned with videos at scale. Specifically, we prompt an LLM to create plausible video captions based on ASR subtitles of instructional videos. To this end, we introduce a prompting method that is able to take into account a longer text of subtitles, allowing us to capture the contextual information beyond one single sentence. We further prompt the LLM to generate timestamps for each produced caption based on the timestamps of the subtitles and finally align the generated captions to the video temporally. In this way, we obtain human-style video captions at scale without human supervision. We apply our method to the subtitles of the HowTo100M dataset, creating a new large-scale dataset, HowToCaption. Our evaluation shows that the resulting captions not only significantly improve the performance over many different benchmark datasets for zero-shot text-video retrieval and video captioning, but also lead to a disentangling of textual narration from the audio, boosting the performance in text-video-audio tasks. All data and code is available at https://github.com/ninatu/howtocaption.
N. Shvetsova and A. Kukleva—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abu-El-Haija, S., et al.: YouTube-8m: a large-scale video classification benchmark. arXiv preprint arXiv:1609.08675 (2016)
Afouras, T., Mavroudi, E., Nagarajan, T., Wang, H., Torresani, L.: HT-step: aligning instructional articles with how-to videos. In: NeurIPS, vol. 36 (2024)
Amrani, E., Ben-Ari, R., Rotman, D., Bronstein, A.: Noise estimation using density estimation for self-supervised multimodal learning. In: AAAI (2021)
Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: a joint video and image encoder for end-to-end retrieval. In: ICCV (2021)
Chang, T.A., Bergen, B.K.: Language model behavior: a comprehensive survey. arXiv preprint arXiv:2303.11504 (2023)
Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12m: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: CVPR (2021)
Chen, B., et al.: Multimodal clustering networks for self-supervised learning from unlabeled videos. In: ICCV (2021)
Chen, D., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: ACL (2011)
Chen, S., et al.: Vast: a vision-audio-subtitle-text omni-modality foundation model and dataset. In: NeurIPS, vol. 36 (2023)
Chiang, W.L., et al.: Vicuna: an open-source chatbot impressing GPT-4 with 90%* ChatGPT quality. Large Model Syst. Organ. (2023)
Cho, J., Lei, J., Tan, H., Bansal, M.: Unifying vision-and-language tasks via text generation. In: ICML (2021)
Desai, K., Johnson, J.: Virtex: learning visual representations from textual annotations. In: CVPR (2021)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)
Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 214–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_13
Ghadiyaram, D., Tran, D., Mahajan, D.: Large-scale weakly-supervised pre-training for video action recognition. In: CVPR (2019)
Han, T., Xie, W., Zisserman, A.: Temporal alignment networks for long-term video. In: CVPR (2022)
Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: CVPR (2019)
Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: ICML (2021)
Koupaee, M., Wang, W.Y.: Wikihow: a large scale text summarization dataset. arXiv preprint arXiv:1810.09305 (2018)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. IJCV (2017)
Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In: ICML (2023)
Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: ICML (2022)
Li, Z., Chen, Q., Han, T., Zhang, Y., Wang, Y., Xie, W.: A strong baseline for temporal video-text alignment. arXiv preprint arXiv:2312.14055 (2023)
Lialin, V., Rawls, S., Chan, D., Ghosh, S., Rumshisky, A., Hamza, W.: Scalable and accurate self-supervised multimodal representation learning without aligned video and text data. In: WACV (2023)
Lin, K., et al.: SwinBERT: end-to-end transformers with sparse attention for video captioning. In: CVPR (2022)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lin, X., Petroni, F., Bertasius, G., Rohrbach, M., Chang, S.F., Torresani, L.: Learning to recognize procedural activities with distant supervision. In: CVPR (2022)
Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS, vol. 36 (2023)
Lu, J., Batra, D., Parikh, D., Lee, S.: VilBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: NeurIPS (2019)
Luo, H., Ji, L., Zhong, M., Chen, Y., Lei, W., Duan, N., Li, T.: CLIP4clip: an empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing (2022)
Maaz, M., Rasheed, H., Khan, S., Khan, F.S.: Video-ChatGPT: towards detailed video understanding via large vision and language models. arXiv preprint arXiv:2306.05424 (2023)
Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end learning of visual representations from uncurated instructional videos. In: CVPR (2020)
Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.: Howto100m: learning a text-video embedding by watching hundred million narrated video clips. In: ICCV (2019)
Nagrani, A., et al.: Learning audio-video modalities from image captions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13674, pp. 407–426. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19781-9_24
Neelakantan, A., et al.: Text and code embeddings by contrastive pre-training. arXiv preprint arXiv:2201.10005 (2022)
van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Ordonez, V., Kulkarni, G., Berg, T.: Im2text: describing images using 1 million captioned photographs. In: NeurIPS (2011)
Portillo-Quintero, J.A., Ortiz-Bayliss, J.C., Terashima-Marín, H.: A straightforward framework for video retrieval using clip. In: Pattern Recognition: 13th Mexican Conference (2021)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)
Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust speech recognition via large-scale weak supervision. In: ICML (2023)
Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog (2019)
Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR (2020)
Rohrbach, A., Rohrbach, M., Schiele, B.: The long-short story of movie description. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 209–221. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_17
Rouditchenko, A., et al.: AVLnet: learning audio-visual language representations from instructional videos. In: Interspeech (2021)
Schuhmann, C., et al.: LAION-400m: open dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114 (2021)
Seo, P.H., Nagrani, A., Arnab, A., Schmid, C.: End-to-end generative pretraining for multimodal video captioning. In: CVPR (2022)
Shvetsova, N., et al.: Everything at once-multi-modal fusion transformer for video retrieval. In: CVPR (2022)
Stroud, J.C., et al.: Learning video representations from textual web supervision. arXiv preprint arXiv:2007.14937 (2020)
Su, W., et al.: VL-BERT: pre-training of generic visual-linguistic representations. In: ICLR (2020)
Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: VideoBERT: a joint model for video and language representation learning. In: ICCV (2019)
Tan, H., Bansal, M.: LXMERT: learning cross-modality encoder representations from transformers. In: EMNLP (2019)
Tang, M., Wang, Z., Liu, Z., Rao, F., Li, D., Li, X.: Clip4caption: clip for video caption. In: ACMMM (2021)
Taori, R., et al: Alpaca: a strong, replicable instruction-following model. Stanford Center for Research on Foundation Models (2023)
Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)
Wang, J., et al.: GIT: a generative image-to-text transformer for vision and language. arXiv preprint arXiv:2205.14100 (2022)
Wang, Y., et al.: InternVid: a large-scale video-text dataset for multimodal understanding and generation. arXiv preprint arXiv:2307.06942 (2023)
Xu, H., et al.: mPLUG-2: a modularized multi-modal foundation model across text, image and video. arXiv preprint arXiv:2302.00402 (2023)
Xu, J., Mei, T., Yao, T., Rui, Y.: MSR-VTT: a large video description dataset for bridging video and language. In: CVPR (2016)
Xue, H., et al.: Advancing high-resolution video-language representation with large-scale video transcriptions. In: CVPR (2022)
Yan, S., et al.: Video-text modeling with zero-shot transfer from contrastive captioners. arXiv preprint arXiv:2212.04979 (2022)
Yang, A., Nagrani, A., Laptev, I., Sivic, J., Schmid, C.: Vidchapters-7m: video chapters at scale. In: NeurIPS, vol. 36 (2024)
Yang, A., et al.: Vid2seq: large-scale pretraining of a visual language model for dense video captioning. In: CVPR (2023)
Ye, Q., et al.: Hitea: hierarchical temporal-aware video-language pre-training. In: ICCV, pp. 15405–15416 (2023)
Zala, A., et al.: Hierarchical video-moment retrieval and step-captioning. In: CVPR (2023)
Zellers, R., et al.: Merlot: multimodal neural script knowledge models. In: NeurIPS (2021)
Zhao, Y., Misra, I., Krähenbühl, P., Girdhar, R.: Learning video representations from large language models. In: CVPR (2023)
Zhou, L., Xu, C., Corso, J.: Towards automatic learning of procedures from web instructional videos. In: AAAI (2018)
Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: MiniGPT-4: enhancing vision-language understanding with advanced large language models. arXiv preprint arXiv:2304.10592 (2023)
Acknowledgements
Nina Shvetsova is supported in part by the German Federal Ministry of Education and Research (BMBF) project STCL - 01IS22067.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shvetsova, N., Kukleva, A., Hong, X., Rupprecht, C., Schiele, B., Kuehne, H. (2025). HowToCaption: Prompting LLMs to Transform Video Annotations at Scale. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15114. Springer, Cham. https://doi.org/10.1007/978-3-031-72992-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-72992-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72991-1
Online ISBN: 978-3-031-72992-8
eBook Packages: Computer ScienceComputer Science (R0)