iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-72624-8_2
Joint RGB-Spectral Decomposition Model Guided Image Enhancement in Mobile Photography | SpringerLink
Skip to main content

Joint RGB-Spectral Decomposition Model Guided Image Enhancement in Mobile Photography

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15071))

Included in the following conference series:

  • 46 Accesses

Abstract

The integration of miniaturized spectrometers into mobile devices offers new avenues for image quality enhancement and facilitates novel downstream tasks. However, the broader application of spectral sensors in mobile photography is hindered by the inherent complexity of spectral images and the constraints of spectral imaging capabilities. To overcome these challenges, we propose a joint RGB-Spectral decomposition model guided enhancement framework, which consists of two steps: joint decomposition and prior-guided enhancement. Firstly, we leverage the complementarity between RGB and Low-resolution Multi-Spectral Images (Lr-MSI) to predict shading, reflectance, and material semantic priors. Subsequently, these priors are seamlessly integrated into the established HDRNet to promote dynamic range enhancement, color mapping, and grid expert learning, respectively. Additionally, we construct a high-quality Mobile-Spec dataset to support our research, and our experiments validate the effectiveness of Lr-MSI in the tone enhancement task. This work aims to establish a solid foundation for advancing spectral vision in mobile photography. The code is available at https://github.com/CalayZhou/JDM-HDRNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gaiasky-mini hyperspectral imaging camera. https://www.dualix.com.cn/en/Goods/desc/id/123/aid/954.html

  2. Spectral Sensing — ams.com. https://ams.com/spectral-sensing

  3. Barrow, H., Tenenbaum, J., Hanson, A., Riseman, E.: Recovering intrinsic scene characteristics. Comput. vis. Syst. 2(3–26), 2 (1978)

    Google Scholar 

  4. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27(4), 2049–2062 (2018)

    Article  MathSciNet  Google Scholar 

  5. Chen, X., et al.: Intrinsic decomposition from a single spectral image. Appl. Opt. 56(20), 5676–5684 (2017)

    Article  Google Scholar 

  6. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6306–6314 (2018)

    Google Scholar 

  7. Cheng, Z., Zheng, Y., You, S., Sato, I.: Non-local intrinsic decomposition with near-infrared priors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2521–2530 (2019)

    Google Scholar 

  8. Erba, I., et al.: Computational color constancy beyond RGB images: multispectral and temporal extensions (2024)

    Google Scholar 

  9. Finlayson, G.D., Zhu, Y.: Designing color filters that make cameras more colorimetric. IEEE Trans. Image Process. 30, 853–867 (2020)

    Article  MathSciNet  Google Scholar 

  10. Fu, X., Ying, Y.: Food safety evaluation based on near infrared spectroscopy and imaging: a review. Crit. Rev. Food Sci. Nutr. 56(11), 1913–1924 (2016)

    Article  Google Scholar 

  11. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. (TOG) 36(4), 1–12 (2017)

    Article  Google Scholar 

  12. Gijsenij, A., Gevers, T., Van De Weijer, J.: Computational color constancy: survey and experiments. IEEE Trans. Image Process. 20(9), 2475–2489 (2011)

    Article  MathSciNet  Google Scholar 

  13. Glatt, O., et al.: Beyond RGB: a real world dataset for multispectral imaging in mobile devices. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 4344–4354 (2024)

    Google Scholar 

  14. He, J., Liu, Y., Qiao, Yu., Dong, C.: Conditional sequential modulation for efficient global image retouching. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 679–695. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_40

    Chapter  Google Scholar 

  15. He, Q., Wang, R.: Hyperspectral imaging enabled by an unmodified smartphone for analyzing skin morphological features and monitoring hemodynamics. Biomed. Opt. Express 11(2), 895–910 (2020)

    Article  Google Scholar 

  16. He, Q., Wang, R.K.: Analysis of skin morphological features and real-time monitoring using snapshot hyperspectral imaging. Biomed. Opt. Express 10(11), 5625–5638 (2019)

    Article  MathSciNet  Google Scholar 

  17. Huang, Q., et al.: Multispectral image intrinsic decomposition via subspace constraint. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6430–6439 (2018)

    Google Scholar 

  18. Jiang, J., Liu, D., Gu, J., Süsstrunk, S.: What is the space of spectral sensitivity functions for digital color cameras? In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 168–179. IEEE (2013)

    Google Scholar 

  19. Karaimer, H.C., Brown, M.S.: A software platform for manipulating the camera imaging pipeline. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I, pp. 429–444. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_26

    Chapter  Google Scholar 

  20. Kim, S.J., Lin, H.T., Lu, Z., Süsstrunk, S., Lin, S., Brown, M.S.: A new in-camera imaging model for color computer vision and its application. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2289–2302 (2012)

    Article  Google Scholar 

  21. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  22. Land, E.H., McCann, J.J.: Lightness and retinex theory. Josa 61(1), 1–11 (1971)

    Google Scholar 

  23. Lindholm, V., et al.: Differentiating malignant from benign pigmented or non-pigmented skin tumours-a pilot study on 3D hyperspectral imaging of complex skin surfaces and convolutional neural networks. J. Clin. Med. 11(7), 1914 (2022)

    Article  Google Scholar 

  24. Liu, C., Yang, H., Fu, J., Qian, X.: 4D LUT: learnable context-aware 4D lookup table for image enhancement. IEEE Trans. Image Process. 32, 4742–4756 (2023)

    Article  Google Scholar 

  25. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  26. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  27. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  28. Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. In: ACM SIGGRAPH 2008 papers, pp. 1–10 (2008)

    Google Scholar 

  29. McGonigle, A.J., et al.: Smartphone spectrometers. Sensors 18(1), 223 (2018)

    Article  MathSciNet  Google Scholar 

  30. Ng, P.C., Chi, Z., Verdie, Y., Lu, J., Plataniotis, K.N.: Hyper-skin: a hyperspectral dataset for reconstructing facial skin-spectra from RGB images. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  31. Rao, S., Huang, Y., Cui, K., Li, Y.: Anti-spoofing face recognition using a metasurface-based snapshot hyperspectral image sensor. Optica 9(11), 1253–1259 (2022)

    Article  Google Scholar 

  32. e Silva, G.M., et al.: Smartphone-based spectrometry system as a prescreening assessment of copper and iron for real time control of water pollution. J. Environ. Manag. 323, 116214 (2022)

    Google Scholar 

  33. Thomas, J.B.: Illuminant estimation from uncalibrated multispectral images. In: 2015 Colour and Visual Computing Symposium (CVCS), pp. 1–6. IEEE (2015)

    Google Scholar 

  34. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6849–6857 (2019)

    Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  36. Yang, C., Jin, M., Xu, Y., Zhang, R., Chen, Y., Liu, H.: SepLUT: separable image-adaptive lookup tables for real-time image enhancement. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022, pp. 201–217. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19797-0_12

    Chapter  Google Scholar 

  37. Yang, Z., Albrow-Owen, T., Cai, W., Hasan, T.: Miniaturization of optical spectrometers. Science 371(6528), eabe0722 (2021)

    Google Scholar 

  38. Yuan, L., Sun, J.: Automatic exposure correction of consumer photographs. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 771–785. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_55

    Chapter  Google Scholar 

  39. Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time. IEEE Trans. Pattern Anal. Mach. Intell. 44(4), 2058–2073 (2020)

    Google Scholar 

  40. Zhang, F., You, S., Li, Y., Fu, Y.: HSI-guided intrinsic image decomposition for outdoor scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 313–322 (2022)

    Google Scholar 

  41. Zhang, F., Zeng, H., Zhang, T., Zhang, L.: CLUT-Net: learning adaptively compressed representations of 3DLUTs for lightweight image enhancement. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6493–6501 (2022)

    Google Scholar 

  42. Zheng, Y., Sato, I., Sato, Y.: Illumination and reflectance spectra separation of a hyperspectral image meets low-rank matrix factorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1779–1787 (2015)

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Key Research and Development Program of China (2023YFF0713300), National Natural Science Foundation of China under Grant (62071216), Leading Technology of Jiangsu Basic Research Plan under Grant (BK20192003), and National Research Foundation Singapore Competitive Research Program (award number CRP29-2022-0003). We thank the device support from NJU-ZPTECH University-Enterprise Joint Laboratory for Computational Spectral Imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7986 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, K. et al. (2025). Joint RGB-Spectral Decomposition Model Guided Image Enhancement in Mobile Photography. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15071. Springer, Cham. https://doi.org/10.1007/978-3-031-72624-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72624-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72623-1

  • Online ISBN: 978-3-031-72624-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics