iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-72353-7_10
ProTeM: Unifying Protein Function Prediction via Text Matching | SpringerLink
Skip to main content

ProTeM: Unifying Protein Function Prediction via Text Matching

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15023))

Included in the following conference series:

  • 392 Accesses

Abstract

The exponential availability of protein sequences has led to the dominance of the pretraining-then-finetuning paradigm for protein function prediction. However, finetuning a pretrained protein language model for diverse downstream tasks requires annotated protein data tailored to each task. To avoid the redundant individual finetuning, we propose a methodology that unifies various Protein function prediction tasks via Text Matching (named ProTeM). This method first transforms simple numeric or category labels from disparate protein datasets into textual descriptions, imbued with rich semantics. We then harness a pretrained large language model, which is proficient in comprehensive language understanding, to capture intrinsic interconnections among varied protein functions and facilitate the alignment between text and protein. During inference, we employ the paradigm of text matching to predict the protein functionalities. Extensive experiments demonstrate that ProTeM achieves performance on par with individually finetuned models, and outshines the model based on conventional multi-task learning. Moreover, ProTeM unveils an enhanced capacity for protein representation, surpassing state-of-the-art PLMs.

M. Qin and X. Li—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.biorxiv.org.

  2. 2.

    https://pubmed.ncbi.nlm.nih.gov.

References

  1. Almagro Armenteros, J.J., Sønderby, C.K., Sønderby, S.K., Nielsen, H., Winther, O.: Deeploc: prediction of protein subcellular localization using deep learning. Bioinformatics 33(21), 3387–3395 (2017)

    Article  Google Scholar 

  2. Bonetta, R., Valentino, G.: Machine learning techniques for protein function prediction. Proteins: Structure, Function Bioinform. 88(3), 397–413 (2020)

    Google Scholar 

  3. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020)

    Google Scholar 

  4. Chung, Y.A., Zhu, C., Zeng, M.: Splat: Speech-language joint pre-training for spoken language understanding. arXiv preprint arXiv:2010.02295 (2020)

  5. Elnaggar, A., et al.: Prottrans: toward understanding the language of life through self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 44(10) (2022). https://doi.org/10.1109/TPAMI.2021.3095381

  6. Gligorijević, V., et al.: Structure-based protein function prediction using graph convolutional networks. Nat. Commun. 12(1), 3168 (2021)

    Article  Google Scholar 

  7. Hu, E.J., et al.: Lora: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  8. Jumper, J., et al.: Highly accurate protein structure prediction with alphafold. Nature 596(7873), 583–589 (2021)

    Article  Google Scholar 

  9. Khurana, S., Rawi, R., Kunji, K., Chuang, G.Y., Bensmail, H., Mall, R.: Deepsol: a deep learning framework for sequence-based protein solubility prediction. Bioinformatics 34(15), 2605–2613 (2018)

    Article  Google Scholar 

  10. Krogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E.L.: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305(3), 567–580 (2001)

    Article  Google Scholar 

  11. Li, L.H., et al.: Grounded language-image pre-training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10965–10975 (2022)

    Google Scholar 

  12. Lin, Z., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023)

    Article  MathSciNet  Google Scholar 

  13. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. CoRR: abs/2107.13586 (2021)

    Google Scholar 

  14. Luo, H., et al.: Clip4clip: an empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing 508, 293–304 (2022)

    Article  Google Scholar 

  15. Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., Rives, A.: Language models enable zero-shot prediction of the effects of mutations on protein function. Adv. Neural. Inf. Process. Syst. 34, 29287–29303 (2021)

    Google Scholar 

  16. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  17. Radivojac, P., et al.: A large-scale evaluation of computational protein function prediction. Nat. Methods 10(3), 221–227 (2013)

    Article  Google Scholar 

  18. Rao, R., et al.: Evaluating protein transfer learning with tape. Adv. Neural. Inf. Process. Syst. 32, 9689 (2019)

    Google Scholar 

  19. Rives, A., et al.: Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. 118(15), e2016239118 (2021)

    Article  Google Scholar 

  20. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification and natural language inference. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 255–269 (2021)

    Google Scholar 

  21. Singh, A., et al.: Flava: a foundational language and vision alignment model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15638–15650 (2022)

    Google Scholar 

  22. Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  23. Wang, Z., et al.: Instructprotein: aligning human and protein language via knowledge instruction. arXiv preprint arXiv:2310.03269 (2023)

  24. Wang, Z., et al.: Multi-level protein structure pre-training via prompt learning. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  25. Wu, F., de Boer, R., van der Klei, I.J.: Gluing yeast peroxisomes–composition and function of membrane contact sites. J. Cell Sci. 136(11), jcs259440 (2023)

    Google Scholar 

  26. Xu, M., Yuan, X., Miret, S., Tang, J.: Protst: Multi-modality learning of protein sequences and biomedical texts. arXiv preprint arXiv:2301.12040 (2023)

  27. Xu, M., et al.: Peer: a comprehensive and multi-task benchmark for protein sequence understanding. Adv. Neural. Inf. Process. Syst. 35, 35156–35173 (2022)

    Google Scholar 

  28. Zhang, N., et al.: Ontoprotein: protein pretraining with gene ontology embedding. arXiv preprint arXiv:2201.11147 (2022)

  29. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 34(12), 5586–5609 (2021)

    Article  Google Scholar 

  30. Zhang, Z., et al.: Protein representation learning by geometric structure pretraining. arXiv preprint arXiv:2203.06125 (2022)

  31. Zhou, C., et al.: Lima: Less is more for alignment. arXiv preprint arXiv:2305.11206 (2023)

  32. Zhou, H.Y., Fu, Y., Zhang, Z., Cheng, B., Yu, Y.: Protein representation learning via knowledge enhanced primary structure reasoning. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (U23A20496, 62302433, 62301480), Hangzhou West Lake Pearl Project Leading Innovative Youth Team Project (TD2023017), and Zhejiang Provincial Natural Science Foundation of China (LQ24F020007). Some figures has been designed using images from Flaticon.com and icons8.com.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhang or Keyan Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, M. et al. (2024). ProTeM: Unifying Protein Function Prediction via Text Matching. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15023. Springer, Cham. https://doi.org/10.1007/978-3-031-72353-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72353-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72352-0

  • Online ISBN: 978-3-031-72353-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics