iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-62922-8_24
A Large Neighborhood Search Metaheuristic for the Stochastic Mixed Model Assembly Line Balancing Problem with Walking Workers | SpringerLink
Skip to main content

A Large Neighborhood Search Metaheuristic for the Stochastic Mixed Model Assembly Line Balancing Problem with Walking Workers

  • Conference paper
  • First Online:
Metaheuristics (MIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14754))

Included in the following conference series:

  • 187 Accesses

Abstract

This work proposes a Large Neighborhood Search Metaheuristic for solving a mixed-model assembly line balancing problem with walking workers and dynamic task assignment. The considered problem is a multi-stage stochastic program with integer recourse. These problems are very hard to solve because the number of binary variables increases exponentially with the number of production cycles. We study different decomposition approaches, and our results suggest that re-optimizing for a sub-tree outperforms other decompositions, such as model-based or station decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Battaïa, O., et al.: Workforce minimization for a mixed-model assembly line in the automotive industry. Int. J. Prod. Econ. 170, 489–500 (2015). https://doi.org/10.1016/j.ijpe.2015.05.038

    Article  Google Scholar 

  2. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0237-4

    Book  Google Scholar 

  3. Boysen, N., Schulze, P., Scholl, A.: Assembly line balancing: what happened in the last fifteen years? Eur. J. Oper. Res. 301(3), 797–814 (2022). https://doi.org/10.1016/j.ejor.2021.11.043

    Article  MathSciNet  Google Scholar 

  4. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://www.gurobi.com

  5. Hashemi-Petroodi, S.E., Thevenin, S., Kovalev, S., Dolgui, A.: The impact of dynamic tasks assignment in paced mixed-model assembly line with moving workers. In: Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D. (eds.) APMS 2020. IAICT, vol. 592, pp. 509–517. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57997-5_59

    Chapter  Google Scholar 

  6. Hashemi-Petroodi, S.E., Thevenin, S., Kovalev, S., Dolgui, A.: Model-dependent task assignment in multi-manned mixed-model assembly lines with walking workers. Omega 113, 102688 (2022). https://doi.org/10.1016/j.omega.2022.102688

    Article  Google Scholar 

  7. Otto, A., Otto, C., Scholl, A.: Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing. Eur. J. Oper. Res. 228(1), 33–45 (2013). https://doi.org/10.1016/j.ejor.2012.12.029

    Article  MathSciNet  Google Scholar 

  8. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 99–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_4

    Chapter  Google Scholar 

  9. Rekiek, B., Delchambre, A.: Assembly Line Design: The Balancing of Mixed-Model Hybrid Assembly Lines with Genetic Algorithms. Springer Series in Advanced Manufacturing, Springer, London (2006). https://doi.org/10.1007/b138846

    Book  Google Scholar 

  10. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

    Chapter  Google Scholar 

  11. Sikora, C.G.S.: Balancing mixed-model assembly lines for random sequences. Eur. J. Oper. Res. 314(2), 597–611 (2024). https://doi.org/10.1016/j.ejor.2023.10.008

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Orion Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thompson, J.O., Lahrichi, N., Meyer, P., Mohammadi, M., Thevenin, S. (2024). A Large Neighborhood Search Metaheuristic for the Stochastic Mixed Model Assembly Line Balancing Problem with Walking Workers. In: Sevaux, M., Olteanu, AL., Pardo, E.G., Sifaleras, A., Makboul, S. (eds) Metaheuristics. MIC 2024. Lecture Notes in Computer Science, vol 14754. Springer, Cham. https://doi.org/10.1007/978-3-031-62922-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62922-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62921-1

  • Online ISBN: 978-3-031-62922-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics