iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-62697-5_7
Simulation-Based Decision Support for Cross-Organisational Workflows | SpringerLink
Skip to main content

Simulation-Based Decision Support for Cross-Organisational Workflows

A Case Study of Emergency Handling

  • Conference paper
  • First Online:
Coordination Models and Languages (COORDINATION 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14676))

Included in the following conference series:

  • 148 Accesses

Abstract

Analysing and managing workflows across organisations can be a complex task. One of the main challenges is that planners often have a limited overview of shared resources and dependencies in collaborative workflows that extend beyond their local context. In this paper, we use an emergency handling workflow across multiple organisations as a case study to demonstrate how our recently developed formal language \(\mathcal {R}{\textsc {pl}}\) and its accompanying tool \(\mathcal {R}{\textsc {pl}}\textrm{Tool}\) can be adopted to facilitate decision making on resource allocation in cross-organisational workflows. We formally model the workflow in \(\mathcal {R}{\textsc {pl}}\), and simulate the model with multiple concurrency levels and resource configurations regarding their availability and efficiency using \(\mathcal {R}{\textsc {pl}}\textrm{Tool}\), allowing the decision-makers to observe how the changes in these scenarios impact the behaviour and the performance of the workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/razi236/Rpl-Tools.

  2. 2.

    https://github.com/razi236/DSCOW/blob/master/examples/emergency.rpl.

References

  1. van der Aalst, W.M., ter Hofstede, A.H.: YAWL: yet another workflow language. Inf. Syst. 30(4), 245–275 (2005). https://doi.org/10.1016/j.is.2004.02.002

    Article  Google Scholar 

  2. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press (1986). https://doi.org/10.7551/mitpress/1086.001.0001

  3. Ahuja, H.N., Nandakumar, V.: Simulation model to forecast project completion time. J. Constr. Eng. Manag. 111(4), 325–342 (1985). https://doi.org/10.1061/(ASCE)0733-9364(1985)111:4(325)

    Article  Google Scholar 

  4. Ali, M.R., Lamo, Y., Pun, V.K.I: Cost analysis for a resource sensitive workflow modelling language. Sci. Comput. Program. 225, 102896 (2023). https://doi.org/10.1016/j.scico.2022.102896

  5. Ali, M.R., Pun, V.K.I: Cost analysis for an actor-based workflow modelling language. In: Campos, S., Minea, M. (eds.) SBMF 2021. LNCS, vol. 13130, pp. 104–121. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92137-8_7

  6. Ali, M.R., Pun, V.K.I: A static analyser for resource sensitive workflow models. In: David, C., Sun, M. (eds.) TASE 2023. LNCS, vol. 13931, pp. 305–312. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35257-7_18

  7. Badiru, A.B.: A simulation approach to PERT network analysis. Simulation 57(4), 245–255 (1991). https://doi.org/10.1177/003754979105700409

    Article  Google Scholar 

  8. Boctor, F.F.: Heuristics for scheduling projects with resource restrictions and several resource-duration modes. Int. J. Prod. Res. 31(11), 2547–2558 (1993). https://doi.org/10.1080/00207549308956882

    Article  Google Scholar 

  9. Chan, W.T., Chua, D.K.H., Kannan, G.: Construction resource scheduling with genetic algorithms. J. Constr. Eng. Manag. 122(2), 125–132 (1996). https://doi.org/10.1061/(ASCE)0733-9364(1996)122:2(125)

    Article  Google Scholar 

  10. Debois, S., Hildebrandt, T., Sandberg, L.: Experience report: constraint-based modelling and simulation of railway emergency response plans. Procedia Comput. Sci. 83, 1295–1300 (2016). https://doi.org/10.1016/j.procs.2016.04.269, the 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)/The 6th International Conference on Sustainable Energy Information Technology (SEIT-2016)/Affiliated Workshops

  11. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_25

    Chapter  Google Scholar 

  12. Durán, F., Falcone, Y., Rocha, C., Salaün, G., Zuo, A.: From static to dynamic analysis and allocation of resources for BPMN processes. In: Bae, K. (ed.) WRLA 2022. LNCS, vol. 13252, pp. 3–21. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12441-9_1

    Chapter  Google Scholar 

  13. Freitas, A.P., Pereira, J.L.: Process simulation support in bpm tools: the case of BPMN (2015). https://api.semanticscholar.org/CorpusID:61670021

  14. Gavish, B., Pirkul, H.: Algorithms for the multi-resource generalized assignment problem. Manag. Sci. 37(6), 695–713 (1991). https://doi.org/10.1287/mnsc.37.6.695

    Article  Google Scholar 

  15. Gholamy, A., Kreinovich, V.: How many Monte-Carlo simulations are needed to adequately process interval uncertainty: an explanation of the smart electric grid-related simulation results. J. Innov. Technol. Educ. 5(1), 1–5 (2018). https://scholarworks.utep.edu/cs_techrep/1214

  16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Exploring processes and deviations. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 304–316. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15895-2_26

    Chapter  Google Scholar 

  17. Leemans, S.J.J., Tax, N.: Causal reasoning over control-flow decisions in process models. In: Franch, X., Poels, G., Gailly, F., Snoeck, M. (eds.) CAiSE 2022. LNCS, vol. 13295, pp. 183–200. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07472-1_11

    Chapter  Google Scholar 

  18. Leu, S.S., Yang, C.H.: A genetic-algorithm-based resource-constrained construction scheduling system. Constr. Manag. Econ. 17(6), 767–776 (1999). https://doi.org/10.1080/014461999371105

    Article  Google Scholar 

  19. Li, J., González, M., Zhu, Y.: A hybrid simulation optimization method for production planning of dedicated remanufacturing. Int. J. Prod. Econ. 117(2), 286–301 (2009). https://doi.org/10.1016/j.ijpe.2008.11.005

    Article  Google Scholar 

  20. Liu, G.: Petri nets modeling message passing and resource sharing. In: Liu, G. (ed.) Petri Nets, pp. 99–121. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-6309-4_4

    Chapter  Google Scholar 

  21. Liu, G., Jiang, C., Zhou, M., Xiong, P.: Interactive Petri nets. IEEE Trans. Syst. Man Cybern. Syst. 43(2), 291–302 (2013). https://doi.org/10.1109/TSMCA.2012.2204741

    Article  Google Scholar 

  22. Narendra, T., Agarwal, P., Gupta, M., Dechu, S.: Counterfactual reasoning for process optimization using structural causal models. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 91–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_6

    Chapter  Google Scholar 

  23. Padilla, E.M., Carr, R.I.: Resource strategies for dynamic project management. J. Constr. Eng. Manag. 117(2), 279–293 (1991). https://doi.org/10.1061/(ASCE)0733-9364(1991)117:2(279)

    Article  Google Scholar 

  24. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511803161

    Book  Google Scholar 

  25. Ritter, F.E., Schoelles, M.J., Quigley, K.S., Klein, L.C.: Determining the number of simulation runs: treating simulations as theories by not sampling their behavior. In: Rothrock, L., Narayanan, S. (eds.) Human-in-the-Loop Simulations, pp. 97–116. Springer, London (2011). https://doi.org/10.1007/978-0-85729-883-6_5

    Chapter  Google Scholar 

  26. Stinson, J.P.: A branch and bound algorithm for a general class of resource-constrained scheduling problems. Unpublished Ph.D. Dissertation, University of North Carolina at Chapel Hill (1976). https://ci.nii.ac.jp/ncid/BB03308422

  27. Talbot, F.B.: Resource-constrained project scheduling with time-resource tradeoffs: the nonpreemptive case. Manag. Sci. 28(10), 1197–1210 (1982). https://doi.org/10.1287/mnsc.28.10.1197

    Article  Google Scholar 

  28. Zeng, Q.T., Lu, F.M., Liu, C., Meng, D.C.: Modeling and analysis for cross-organizational emergency response systems using Petri nets. Chin. J. Comput 36(11), 2290–2302 (2013). https://api.semanticscholar.org/CorpusID:63737243

  29. Zeng, Q., Liu, C., Duan, H., Zhou, M.: Resource conflict checking and resolution controller design for cross-organization emergency response processes. IEEE Trans. Syst. Man Cybern. Syst. 50(10), 3685–3700 (2020). https://doi.org/10.1109/TSMC.2019.2906335

    Article  Google Scholar 

  30. Zeng, Q., Sun, S.X., Duan, H., Liu, C., Wang, H.: Cross-organizational collaborative workflow mining from a multi-source log. Decis. Support Syst. 54(3), 1280–1301 (2013). https://doi.org/10.1016/j.dss.2012.12.001

    Article  Google Scholar 

  31. Zhang, H., Li, H.: Simulation-based optimization for dynamic resource allocation. Autom. Constr. 13(3), 409–420 (2004). https://doi.org/10.1016/j.autcon.2003.12.005

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the CroFlow project: Enabling Highly Automated Cross-Organisational Workflow Planning, funded by the Research Council of Norway (grant no. 326249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rizwan Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, M.R., Lamo, Y., Pun, V.K.I. (2024). Simulation-Based Decision Support for Cross-Organisational Workflows. In: Castellani, I., Tiezzi, F. (eds) Coordination Models and Languages. COORDINATION 2024. Lecture Notes in Computer Science, vol 14676. Springer, Cham. https://doi.org/10.1007/978-3-031-62697-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62697-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62696-8

  • Online ISBN: 978-3-031-62697-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics