iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-60597-0_4
Efficiently Mining Closed Interval Patterns with Constraint Programming | SpringerLink
Skip to main content

Efficiently Mining Closed Interval Patterns with Constraint Programming

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2024)

Abstract

Constraint programming (CP) has become increasingly prevalent in recent years for performing pattern mining tasks, particularly on binary datasets. While numerous CP models have been designed for mining on binary data, there does not exist any model designed for mining on numerical datasets. Therefore these kinds of datasets need to be pre-processed to fit the existing methods. Afterward a post-processing is also required to recover the patterns into a numerical format. This paper presents two CP approaches for mining closed interval patterns directly from numerical data. Our proposed models seamlessly execute pattern mining tasks without any loss of information or the need for pre- or post-processing steps. Experiments conducted on different numerical datasets demonstrate the effectiveness of our proposed CP models compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://archive.ics.uci.edu/datasets.

  2. 2.

    https://github.com/google/or-tools/.

References

  1. Belfodil, A., Kuznetsov, S.O., Robardet, C., Kaytoue, M.: Mining convex polygon patterns with formal concept analysis. In: Sierra, C. (ed.) IJCAI, pp. 1425–1432 (2017)

    Google Scholar 

  2. Calders, T., Rigotti, C., Boulicaut, J.F.: A survey on condensed representations for frequent sets. In: Boulicaut, J.F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and Inductive Databases. LNCS, vol. 3848, pp. 64–80. Springer, Heidelberg (2005). https://doi.org/10.1007/11615576_4

    Chapter  Google Scholar 

  3. Chabert, M., Solnon, C.: A global constraint for the exact cover problem: application to conceptual clustering. J. Artif. Intell. Res. 67, 509–547 (2020)

    Article  MathSciNet  Google Scholar 

  4. Codocedo, V., Napoli, A.: A proposition for combining pattern structures and relational concept analysis. In: ICFCA, pp. 96 – 111 (2014)

    Google Scholar 

  5. Dao, T., Vrain, C., Duong, K., Davidson, I.: A framework for actionable clustering using constraint programming. In: ECAI, pp. 453–461. Frontiers in Artificial Intelligence and Applications (2016)

    Google Scholar 

  6. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Machine Learning: Proceeding of the Twelfth International Conference, pp. 194–202. Morgan Kaufmann (1995)

    Google Scholar 

  7. Guns, T., Nijssen, S., De Raedt, L.: k-pattern set mining under constraints. IEEE Trans. Knowl. Data Eng. 25(2), 402–418 (2013)

    Article  Google Scholar 

  8. Kaytoue, M., Kuznetsov, S., Napoli, A.: Revisiting numerical pattern mining with formal concept analysis. IJCAI (2011)

    Google Scholar 

  9. Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_44

    Chapter  Google Scholar 

  10. Lazaar, N., et al.: A global constraint for closed frequent pattern mining. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 333–349. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-44953-1_22

    Chapter  Google Scholar 

  11. Makhalova, T., Kuznetsov, S.O., Napoli, A.: Mint: MDL-based approach for mining interesting numerical pattern sets. Data Min. Knowl. Discov. 36, 108–145 (2022)

    Article  MathSciNet  Google Scholar 

  12. Meeng, M., Knobbe, A.J.: For real: a thorough look at numeric attributes in subgroup discovery. Data Min. Knowl. Discov. 35(1), 158–212 (2021)

    Article  MathSciNet  Google Scholar 

  13. Millot, A., Cazabet, R., Boulicaut, J.: Optimal subgroup discovery in purely numerical data. In: Lauw, H., Wong, R.W., Ntoulas, A., Lim, E.P., Ng, S.K., Pan, S. (eds.) PAKDD 2020. LNCS, vol. 12085, pp. 112–124. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-47436-2_9

    Chapter  Google Scholar 

  14. Nguyen, H.V., Vreeken, J.: Flexibly mining better subgroups. In: Venkatasubramanian, S.C., Jr., W.M. (eds.) Proceedings of the SIAM International Conference on Data Mining, USA, pp. 585–593. SIAM (2016). https://doi.org/10.1137/1.9781611974348.66

  15. Nijssen, S., Zimmermann, A.: Constraint-based pattern mining. In: Aggarwal, C., Han, J. (eds.) Frequent Pattern Mining, pp. 147–163. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-07821-2_7

  16. Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for data mining and machine learning. In: AAAI (2010)

    Google Scholar 

  17. Salleb-Aouissi, A., Vrain, C., Nortet, C.: Quantminer: a genetic algorithm for mining quantitative association rules. In: Veloso, M.M. (ed.) IJCAI, pp. 1035–1040 (2007)

    Google Scholar 

  18. Song, C., Ge, T.: Discovering and managing quantitative association rules. In: CIKM 2013, pp. 2429–2434 (2013)

    Google Scholar 

  19. Uno, T., Asai, T., Uchida, Y., Arimura, H.: LCM: an efficient algorithm for enumerating frequent closed item sets. In: Proceedings of the ICDM Workshop on Frequent Itemset Mining Implementations (2003)

    Google Scholar 

  20. Witteveen, J., Duivesteijn, W., Knobbe, A.J., Grünwald, P.: Realkrimp - finding hyperintervals that compress with MDL for real-valued data. In: IDA, pp. 368–379 (2014)

    Google Scholar 

Download references

Acknowledgement

The first author is supported by the French National Research Agency (ANR) and Region Normandie under grant HAISCoDe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djawad Bekkoucha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bekkoucha, D., Ouali, A., Boizumault, P., Crémilleux, B. (2024). Efficiently Mining Closed Interval Patterns with Constraint Programming. In: Dilkina, B. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2024. Lecture Notes in Computer Science, vol 14742. Springer, Cham. https://doi.org/10.1007/978-3-031-60597-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60597-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60596-3

  • Online ISBN: 978-3-031-60597-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics