Abstract
Constraint programming (CP) has become increasingly prevalent in recent years for performing pattern mining tasks, particularly on binary datasets. While numerous CP models have been designed for mining on binary data, there does not exist any model designed for mining on numerical datasets. Therefore these kinds of datasets need to be pre-processed to fit the existing methods. Afterward a post-processing is also required to recover the patterns into a numerical format. This paper presents two CP approaches for mining closed interval patterns directly from numerical data. Our proposed models seamlessly execute pattern mining tasks without any loss of information or the need for pre- or post-processing steps. Experiments conducted on different numerical datasets demonstrate the effectiveness of our proposed CP models compared to other methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belfodil, A., Kuznetsov, S.O., Robardet, C., Kaytoue, M.: Mining convex polygon patterns with formal concept analysis. In: Sierra, C. (ed.) IJCAI, pp. 1425–1432 (2017)
Calders, T., Rigotti, C., Boulicaut, J.F.: A survey on condensed representations for frequent sets. In: Boulicaut, J.F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and Inductive Databases. LNCS, vol. 3848, pp. 64–80. Springer, Heidelberg (2005). https://doi.org/10.1007/11615576_4
Chabert, M., Solnon, C.: A global constraint for the exact cover problem: application to conceptual clustering. J. Artif. Intell. Res. 67, 509–547 (2020)
Codocedo, V., Napoli, A.: A proposition for combining pattern structures and relational concept analysis. In: ICFCA, pp. 96 – 111 (2014)
Dao, T., Vrain, C., Duong, K., Davidson, I.: A framework for actionable clustering using constraint programming. In: ECAI, pp. 453–461. Frontiers in Artificial Intelligence and Applications (2016)
Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Machine Learning: Proceeding of the Twelfth International Conference, pp. 194–202. Morgan Kaufmann (1995)
Guns, T., Nijssen, S., De Raedt, L.: k-pattern set mining under constraints. IEEE Trans. Knowl. Data Eng. 25(2), 402–418 (2013)
Kaytoue, M., Kuznetsov, S., Napoli, A.: Revisiting numerical pattern mining with formal concept analysis. IJCAI (2011)
Khiari, M., Boizumault, P., Crémilleux, B.: Constraint programming for mining n-ary patterns. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 552–567. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_44
Lazaar, N., et al.: A global constraint for closed frequent pattern mining. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 333–349. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-44953-1_22
Makhalova, T., Kuznetsov, S.O., Napoli, A.: Mint: MDL-based approach for mining interesting numerical pattern sets. Data Min. Knowl. Discov. 36, 108–145 (2022)
Meeng, M., Knobbe, A.J.: For real: a thorough look at numeric attributes in subgroup discovery. Data Min. Knowl. Discov. 35(1), 158–212 (2021)
Millot, A., Cazabet, R., Boulicaut, J.: Optimal subgroup discovery in purely numerical data. In: Lauw, H., Wong, R.W., Ntoulas, A., Lim, E.P., Ng, S.K., Pan, S. (eds.) PAKDD 2020. LNCS, vol. 12085, pp. 112–124. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-47436-2_9
Nguyen, H.V., Vreeken, J.: Flexibly mining better subgroups. In: Venkatasubramanian, S.C., Jr., W.M. (eds.) Proceedings of the SIAM International Conference on Data Mining, USA, pp. 585–593. SIAM (2016). https://doi.org/10.1137/1.9781611974348.66
Nijssen, S., Zimmermann, A.: Constraint-based pattern mining. In: Aggarwal, C., Han, J. (eds.) Frequent Pattern Mining, pp. 147–163. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-07821-2_7
Raedt, L.D., Guns, T., Nijssen, S.: Constraint programming for data mining and machine learning. In: AAAI (2010)
Salleb-Aouissi, A., Vrain, C., Nortet, C.: Quantminer: a genetic algorithm for mining quantitative association rules. In: Veloso, M.M. (ed.) IJCAI, pp. 1035–1040 (2007)
Song, C., Ge, T.: Discovering and managing quantitative association rules. In: CIKM 2013, pp. 2429–2434 (2013)
Uno, T., Asai, T., Uchida, Y., Arimura, H.: LCM: an efficient algorithm for enumerating frequent closed item sets. In: Proceedings of the ICDM Workshop on Frequent Itemset Mining Implementations (2003)
Witteveen, J., Duivesteijn, W., Knobbe, A.J., Grünwald, P.: Realkrimp - finding hyperintervals that compress with MDL for real-valued data. In: IDA, pp. 368–379 (2014)
Acknowledgement
The first author is supported by the French National Research Agency (ANR) and Region Normandie under grant HAISCoDe.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bekkoucha, D., Ouali, A., Boizumault, P., Crémilleux, B. (2024). Efficiently Mining Closed Interval Patterns with Constraint Programming. In: Dilkina, B. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2024. Lecture Notes in Computer Science, vol 14742. Springer, Cham. https://doi.org/10.1007/978-3-031-60597-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-60597-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60596-3
Online ISBN: 978-3-031-60597-0
eBook Packages: Computer ScienceComputer Science (R0)