iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-60433-1_4
SATQUBOLIB: A Python Framework for Creating and Benchmarking (Max-)3SAT QUBOs | SpringerLink
Skip to main content

SATQUBOLIB: A Python Framework for Creating and Benchmarking (Max-)3SAT QUBOs

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2024)

Abstract

In this paper, we present an open-source Python framework, called satqubolib. This framework aims to provide all necessary tools for solving (MAX)-3SAT problems on quantum hardware systems via Quadratic Unconstrained Binary Optimization (QUBO). Our framework solves two major issues when solving (MAX)-3SAT instances in the context of quantum computing. Firstly, a common way of solving satisfiability instances with quantum methods is, to transform these instances into instances of QUBO, as QUBO is the input format for quantum annealers and the Quantum Approximate Optimization Algorithm (QAOA) on quantum gate systems. Studies have shown, that the choice of this transformation can significantly impact the solution quality of quantum hardware systems. Thus, our framework provides thousands of usable QUBO transformations for satisfiability problems. Doing so also enables practitioners from any domain to immediately explore and use quantum techniques as a potential solver for their domain-specific problems, as long as they can be encoded as satisfiability problems. As a second contribution, we created a dataset of 6000 practically hard and satisfiable SAT instances that are also small enough to be solved with current quantum(-hybrid) methods. This dataset enables meaningful benchmarking of new quantum, quantum-hybrid, and classical methods for solving satisfiability problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ZielinskiSebastian/satqubolib/.

  2. 2.

    pip install satqubolib

  3. 3.

    (https://github.com/ZielinskiSebastian/satqubolib).

References

  1. 2011, S.C.: Sat competition 2011: Benchmark submission guidelines (2011). https://satcompetition.github.io/2023/benchmarks.html. Accessed 9 Feb 2024

  2. Abate, P., Di Cosmo, R., Gousios, G., Zacchiroli, S.: Dependency solving is still hard, but we are getting better at it. In: 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 547–551. IEEE (2020)

    Google Scholar 

  3. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambrtidge University Press (2009)

    Google Scholar 

  4. Balyo, T., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.): Proceedings of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions. Department of Computer Science Series of Publications B, Department of Computer Science, University of Helsinki, Finland (2023)

    Google Scholar 

  5. Barták, R., Salido, M.A., Rossi, F.: Constraint satisfaction techniques in planning and scheduling. J. Intell. Manuf. 21, 5–15 (2010)

    Article  Google Scholar 

  6. Biere, A., Fleury, M.: Kissat homepage (2020). https://fmv.jku.at/kissat/ Accessed Feb 11 2024

  7. Chancellor, N., Zohren, S., Warburton, P.A., Benjamin, S.C., Roberts, S.: A direct mapping of max k-sat and high order parity checks to a chimera graph. Sci. Rep. 6(1), 37107 (2016)

    Article  Google Scholar 

  8. Choi, V.: Adiabatic quantum algorithms for the np-complete maximum-weight independent set, exact cover and 3sat problems. arXiv preprint arXiv:1004.2226 (2010)

  9. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

    Google Scholar 

  10. Duan, Q., Al-Haj, S., Al-Shaer, E.: Provable configuration planning for wireless sensor networks. In: 2012 8th International Conference on Network and Service Management (cnsm) and 2012 Workshop on Systems Virtualiztion Management (svm), pp. 316–321. IEEE (2012)

    Google Scholar 

  11. Escamocher, G., O’Sullivan, B., Prestwich, S.D.: Generating difficult sat instances by preventing triangles. arXiv preprint arXiv:1903.03592 (2019)

  12. Glover, F., Kochenberger, G., Du, Y.: A tutorial on formulating and using qubo models. arXiv preprint arXiv:1811.11538 (2018)

  13. Gutin, G., Karapetyan, D.: Constraint branching in workflow satisfiability problem. In: Proceedings of the 25th ACM Symposium on Access Control Models and Technologies, pp. 93–103 (2020)

    Google Scholar 

  14. Hoos, H.H., Stützle, T.: Satlib: an online resource for research on sat. Sat 2000, 283–292 (2000)

    Google Scholar 

  15. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for prototyping with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) Theory and Applications of Satisfiability Testing – SAT 2018: 21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9–12, 2018, Proceedings, pp. 428–437. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_26

    Chapter  Google Scholar 

  16. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. ACM SIGPLAN Notices 46(6), 437–446 (2011)

    Article  Google Scholar 

  17. Karapetyan, D., Parkes, A.J., Gutin, G., Gagarin, A.: Pattern-based approach to the workflow satisfiability problem with user-independent constraints. J. Artif. Intell. Res. 66, 85–122 (2019)

    Article  MathSciNet  Google Scholar 

  18. Krüger, T., Mauerer, W.: Quantum annealing-based software components: An experimental case study with sat solving. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, pp. 445–450 (2020)

    Google Scholar 

  19. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  20. Marques-Silva, J.P., Sakallah, K.A.: Boolean satisfiability in electronic design automation. In: Proceedings of the 37th Annual Design Automation Conference, pp. 675–680 (2000)

    Google Scholar 

  21. Nüßlein, J., Gabor, T., Linnhoff-Popien, C., Feld, S.: Algorithmic qubo formulations for k-sat and hamiltonian cycles. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 2240–2246 (2022)

    Google Scholar 

  22. Nüßlein, J., Zielinski, S., Gabor, T., Linnhoff-Popien, C., Feld, S.: Solving (max) 3-sat via quadratic unconstrained binary optimization. arXiv preprint arXiv:2302.03536 (2023)

  23. Radicchi, F., Vilone, D., Yoon, S., Meyer-Ortmanns, H.: Social balance as a satisfiability problem of computer science. Phys. Rev. E 75(2), 026106 (2007)

    Article  MathSciNet  Google Scholar 

  24. Rintanen, J.: Planning as satisfiability: Heuristics. Artif. Intell. 193, 45–86 (2012)

    Google Scholar 

  25. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans and algorithms for plan search. Artif. Intell. 170(12–13), 1031–1080 (2006)

    Article  MathSciNet  Google Scholar 

  26. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems. Artif. Intell. 81(1–2), 17–29 (1996)

    Google Scholar 

  27. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

    Google Scholar 

  28. Spence, I.: Balanced random sat benchmarks. SAT Competition 2017, 53 (2017)

    Google Scholar 

  29. Verma, A., Lewis, M., Kochenberger, G.: Efficient qubo transformation for higher degree pseudo boolean functions. arXiv preprint arXiv:2107.11695 (2021)

  30. Zaman, M., Tanahashi, K., Tanaka, S.: Pyqubo: Python library for mapping combinatorial optimization problems to qubo form. IEEE Trans. Comput. 71(4), 838–850 (2021)

    Article  Google Scholar 

  31. Zielinski, S., Nüßlein, J., Stein, J., Gabor, T., Linnhoff-Popien, C., Feld, S.: Influence of different 3sat-to-qubo transformations on the solution quality of quantum annealing: A benchmark study. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 2263–2271. GECCO ’23 Companion, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3583133.3596330

  32. Zielinski, S., Nüßlein, J., Stein, J., Gabor, T., Linnhoff-Popien, C., Feld, S.: Pattern qubos: algorithmic construction of 3sat-to-qubo transformations. Electronics 12(16) (2023). https://doi.org/10.3390/electronics12163492, https://www.mdpi.com/2079-9292/12/16/3492

Download references

Acknowledgments

The partial funding of this paper by the German Federal Ministry of Education and Research through the funding program “quantum technologies — from basic research to market” (contract number: 13N16196) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Zielinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zielinski, S., Benkard, M., Nüßlein, J., Linnhoff-Popien, C., Feld, S. (2024). SATQUBOLIB: A Python Framework for Creating and Benchmarking (Max-)3SAT QUBOs. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2024. Communications in Computer and Information Science, vol 2109. Springer, Cham. https://doi.org/10.1007/978-3-031-60433-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60433-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60432-4

  • Online ISBN: 978-3-031-60433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics