iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-56107-8_38
Breaking Down Barriers with Knowledge Graphs: Data Integration for Cross-Organizational Process Mining | SpringerLink
Skip to main content

Breaking Down Barriers with Knowledge Graphs: Data Integration for Cross-Organizational Process Mining

  • Conference paper
  • First Online:
Process Mining Workshops (ICPM 2023)

Abstract

Cross-organizational process mining (coPM) with data from at least two organizations assists cooperating organizations in optimizing their operations by enabling an in-depth and continuous process analysis. As coPM faces unique challenges and is rarely applied, we followed a design science-based approach and developed a three-step extension to the PM project methodology to integrate data across organizational boundaries. Each organization first creates a local event data knowledge graph (KG). Second, a trusted third party integrates all local KGs into a global KG. Third, a federated event log and process knowledge are retrieved for coPM analysis. Overall, we present the first version of a methodology to support data integration for coPM, thereby assisting researchers and practitioners in unlocking value potentials from coPM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ietf.org/rfc/rfc2396.txt.

  2. 2.

    https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

  3. 3.

    https://www.w3.org/TR/2012/REC-owl2-overview-20121211/.

  4. 4.

    https://www.w3.org/TR/shacl/.

  5. 5.

    https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

  6. 6.

    The example is publicly available in a GitHub repository (https://anonymous.4open.science/r/e-pm2-data-5D3B).

  7. 7.

    https://github.com/RMLio/rmlmapper-java.

  8. 8.

    https://www.w3.org/TR/2013/REC-prov-O-20130430/.

  9. 9.

    https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html.

References

  1. Reinkemeyer, L.: Process Mining in Action - Principles, Use Cases and Outlook. Springer, Cham (2020)

    Book  Google Scholar 

  2. Thiede, M., Fuerstenau, D., Bezerra Barquet Ana, P.: How is process mining technology used by organizations? A systematic literature review of empirical studies. Bus. Process Manag. J. 24(4), 900–922 (2018)

    Google Scholar 

  3. Rott, J., Böhm, M.: Value distribution in cross-organizational process mining: insights from related literature. In: Pacific Asia Conference for Information Systems (PACIS), pp. 1–17. Virtual Conference (2022)

    Google Scholar 

  4. Van Der Aalst, W.: Process Mining - Data Science in Action. Springer, Heidelberg (2016)

    Book  Google Scholar 

  5. Van Der Aalst, W.: Federated process mining: exploiting event data across organizational boundaries. In: 2021 IEEE International Conference on Smart Data Services (SMDS), pp. 1–7. Virtual Conference (2021)

    Google Scholar 

  6. Buijs, J.C.A.M., Reijers, H.A.: Comparing business process variants using models and event logs. In: Bider, I., et al. (eds.) BPMDS/EMMSAD -2014. LNBIP, vol. 175, pp. 154–168. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43745-2_11

    Chapter  Google Scholar 

  7. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)

    Article  Google Scholar 

  8. Jeffery, K.: Metadata: an overview and some issues. Ercim News 35, 1–6 (1998)

    Google Scholar 

  9. Van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_19

    Chapter  Google Scholar 

  10. Van der Aalst, W.: Intra- and inter-organizational process mining: discovering processes within and between organizations. In: Johannesson, P., Krogstie, J., Opdahl, A.L. (eds.) PoEM 2011. LNBIP, vol. 92, pp. 1–11. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24849-8_1

    Chapter  Google Scholar 

  11. Golshan, B., Halevy, A., Mihaila, G., Tan, W.-C.: Data integration: after the teenage years. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 101–106 (2017)

    Google Scholar 

  12. Pereira Detro, S., Morozov, D., Lezoche, M., Panetto, H., Portela Santos, E., Zdravkovic, M.: Enhancing semantic interoperability in healthcare using semantic process mining. In: 6th International Conference on Information Society and Technology, ICIST 2016, pp. 80–85 (2016)

    Google Scholar 

  13. Suriadi, S., Mans, R.S., Wynn, M.T., Partington, A., Karnon, J.: Measuring patient flow variations: a cross-organisational process mining approach. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 43–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08222-6_4

    Chapter  Google Scholar 

  14. Zeng, Q., Sun, S.X., Duan, H., Liu, C., Wang, H.: Cross-organizational collaborative workflow mining from a multi-source log. Decis. Support. Syst. 54(3), 1280–1301 (2013)

    Article  Google Scholar 

  15. Engel, R., et al.: Analyzing inter-organizational business processes. IseB 14(3), 577–612 (2016)

    Article  Google Scholar 

  16. Aksu, Ü., Schunselaar, D.M.M., Reijers, H.A.: A cross-organizational process mining framework for obtaining insights from software products: accurate comparison challenges. In: 2016 IEEE 18th Conference on Business Informatics (CBI), Paris, France, pp. 153–162 (2016)

    Google Scholar 

  17. Yan, J., Wang, C., Cheng, W., Gao, M., Zhou, A.: A retrospective of knowledge graphs. Front. Comput. Sci. 12(1), 55–74 (2018)

    Article  Google Scholar 

  18. Noy, N.F., Mcguinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology. https://corais.org/sites/default/files/ontology_development_101_aguide_to_creating_your_first_ontology.pdf. Accessed 25 Aug 2023

  19. Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: an overview of systems and use cases. Data Intell. 1(3), 201–223 (2019)

    Article  Google Scholar 

  20. Asgari, R., Moghadam, M.G., Mahdavi, M., Erfanian, A.: An ontology-based approach for integrating heterogeneous databases. Open Comput. Sci. 5(1), 41–50 (2015)

    Article  Google Scholar 

  21. Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extracting event logs from legacy data: the onprom tool and methodology. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59336-4_16

    Chapter  Google Scholar 

  22. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data Semant. 10(1), 109–141 (2021)

    Article  Google Scholar 

  23. Fahland, D.: Process mining over multiple behavioral dimensions with event knowledge graphs. In: van der Aalst, W., Carmona, J. (eds.) Process Mining Handbook, pp. 274–319. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_9

    Chapter  Google Scholar 

  24. Hartig, O.: RDF* and SPARQL*: an alternative approach to annotate statements in RDF. In: International Semantic Web Conference 2017, Vienna, Austria, pp. 1–4 (2017)

    Google Scholar 

  25. Ingvaldsen, J.E., Gulla, J.A.: Industrial application of semantic process mining. Enterp. Inf. Syst. 6(2), 139–163 (2012)

    Article  Google Scholar 

  26. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)

    Article  Google Scholar 

  27. Angles, R., Thakkar, H., Tomaszuk, D.: Mapping RDF databases to property graph databases. IEEE Access 8, 86091–86110 (2020)

    Article  Google Scholar 

  28. Spanos, D.-E., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web: a survey. Semant. Web 3(2), 169–209 (2012)

    Article  Google Scholar 

  29. Österle, H., et al.: Memorandum on design-oriented information systems research. Eur. J. Inf. Syst. 20(1), 7–10 (2011)

    Article  Google Scholar 

  30. Gläser, J., Laudel, G.: Experteninterviews und qualitative Inhaltsanalyse. VS Verlag für Sozialwissenschaften Wiesbaden (Germany) (2010)

    Google Scholar 

  31. Pedrinaci, C., Domingue, J.: Towards an ontology for process monitoring and mining. In: CEUR Workshop Proceedings, Innsbruck, Austria, pp. 76–87 (2007)

    Google Scholar 

  32. Van Hage, W.R., Ceolin, D.: The simple event model. In: van de Laar, P., Tretmans, J., Borth, M. (eds.) Situation Awareness with Systems of Systems, pp. 149–169. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6230-9_10

    Chapter  Google Scholar 

  33. Xiong, J., Xiao, G., Kalayci, T.E., Montali, M., Gu, Z., Calvanese, D.: A virtual knowledge graph based approach for object-centric event logs extraction. In: Montali, M., Senderovich, A., Weidlich, M. (eds.) ICPM 2022. LNBP, vol. 468, pp. 466–478. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27815-0_34

    Chapter  Google Scholar 

  34. Van der Aalst, W.: Decomposing process mining problems using passages. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-4_5

    Chapter  Google Scholar 

  35. Zhu, L., Ghasemi-Gol, M., Szekely, P., Galstyan, A., Knoblock, C.A.: Unsupervised entity resolution on multi-type graphs. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 649–667. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_39

    Chapter  Google Scholar 

  36. Beerepoot, I., et al.: The biggest business process management problems to solve before we die. Comput. Ind. 146(103837) (2023)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Bayerisches Verbundforschungsprogramm (BayVFP) through the KIWI project (grant no. DIK0318/03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Rott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rott, J., Dorsch, R., Freund, M., Böhm, M., Harth, A., Krcmar, H. (2024). Breaking Down Barriers with Knowledge Graphs: Data Integration for Cross-Organizational Process Mining. In: De Smedt, J., Soffer, P. (eds) Process Mining Workshops. ICPM 2023. Lecture Notes in Business Information Processing, vol 503. Springer, Cham. https://doi.org/10.1007/978-3-031-56107-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56107-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56106-1

  • Online ISBN: 978-3-031-56107-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics