Abstract
Cross-organizational process mining (coPM) with data from at least two organizations assists cooperating organizations in optimizing their operations by enabling an in-depth and continuous process analysis. As coPM faces unique challenges and is rarely applied, we followed a design science-based approach and developed a three-step extension to the PM project methodology to integrate data across organizational boundaries. Each organization first creates a local event data knowledge graph (KG). Second, a trusted third party integrates all local KGs into a global KG. Third, a federated event log and process knowledge are retrieved for coPM analysis. Overall, we present the first version of a methodology to support data integration for coPM, thereby assisting researchers and practitioners in unlocking value potentials from coPM analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
The example is publicly available in a GitHub repository (https://anonymous.4open.science/r/e-pm2-data-5D3B).
- 7.
- 8.
- 9.
References
Reinkemeyer, L.: Process Mining in Action - Principles, Use Cases and Outlook. Springer, Cham (2020)
Thiede, M., Fuerstenau, D., Bezerra Barquet Ana, P.: How is process mining technology used by organizations? A systematic literature review of empirical studies. Bus. Process Manag. J. 24(4), 900–922 (2018)
Rott, J., Böhm, M.: Value distribution in cross-organizational process mining: insights from related literature. In: Pacific Asia Conference for Information Systems (PACIS), pp. 1–17. Virtual Conference (2022)
Van Der Aalst, W.: Process Mining - Data Science in Action. Springer, Heidelberg (2016)
Van Der Aalst, W.: Federated process mining: exploiting event data across organizational boundaries. In: 2021 IEEE International Conference on Smart Data Services (SMDS), pp. 1–7. Virtual Conference (2021)
Buijs, J.C.A.M., Reijers, H.A.: Comparing business process variants using models and event logs. In: Bider, I., et al. (eds.) BPMDS/EMMSAD -2014. LNBIP, vol. 175, pp. 154–168. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43745-2_11
Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)
Jeffery, K.: Metadata: an overview and some issues. Ercim News 35, 1–6 (1998)
Van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_19
Van der Aalst, W.: Intra- and inter-organizational process mining: discovering processes within and between organizations. In: Johannesson, P., Krogstie, J., Opdahl, A.L. (eds.) PoEM 2011. LNBIP, vol. 92, pp. 1–11. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24849-8_1
Golshan, B., Halevy, A., Mihaila, G., Tan, W.-C.: Data integration: after the teenage years. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 101–106 (2017)
Pereira Detro, S., Morozov, D., Lezoche, M., Panetto, H., Portela Santos, E., Zdravkovic, M.: Enhancing semantic interoperability in healthcare using semantic process mining. In: 6th International Conference on Information Society and Technology, ICIST 2016, pp. 80–85 (2016)
Suriadi, S., Mans, R.S., Wynn, M.T., Partington, A., Karnon, J.: Measuring patient flow variations: a cross-organisational process mining approach. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 43–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08222-6_4
Zeng, Q., Sun, S.X., Duan, H., Liu, C., Wang, H.: Cross-organizational collaborative workflow mining from a multi-source log. Decis. Support. Syst. 54(3), 1280–1301 (2013)
Engel, R., et al.: Analyzing inter-organizational business processes. IseB 14(3), 577–612 (2016)
Aksu, Ü., Schunselaar, D.M.M., Reijers, H.A.: A cross-organizational process mining framework for obtaining insights from software products: accurate comparison challenges. In: 2016 IEEE 18th Conference on Business Informatics (CBI), Paris, France, pp. 153–162 (2016)
Yan, J., Wang, C., Cheng, W., Gao, M., Zhou, A.: A retrospective of knowledge graphs. Front. Comput. Sci. 12(1), 55–74 (2018)
Noy, N.F., Mcguinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology. https://corais.org/sites/default/files/ontology_development_101_aguide_to_creating_your_first_ontology.pdf. Accessed 25 Aug 2023
Xiao, G., Ding, L., Cogrel, B., Calvanese, D.: Virtual knowledge graphs: an overview of systems and use cases. Data Intell. 1(3), 201–223 (2019)
Asgari, R., Moghadam, M.G., Mahdavi, M., Erfanian, A.: An ontology-based approach for integrating heterogeneous databases. Open Comput. Sci. 5(1), 41–50 (2015)
Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extracting event logs from legacy data: the onprom tool and methodology. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59336-4_16
Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data Semant. 10(1), 109–141 (2021)
Fahland, D.: Process mining over multiple behavioral dimensions with event knowledge graphs. In: van der Aalst, W., Carmona, J. (eds.) Process Mining Handbook, pp. 274–319. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_9
Hartig, O.: RDF* and SPARQL*: an alternative approach to annotate statements in RDF. In: International Semantic Web Conference 2017, Vienna, Austria, pp. 1–4 (2017)
Ingvaldsen, J.E., Gulla, J.A.: Industrial application of semantic process mining. Enterp. Inf. Syst. 6(2), 139–163 (2012)
Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)
Angles, R., Thakkar, H., Tomaszuk, D.: Mapping RDF databases to property graph databases. IEEE Access 8, 86091–86110 (2020)
Spanos, D.-E., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web: a survey. Semant. Web 3(2), 169–209 (2012)
Österle, H., et al.: Memorandum on design-oriented information systems research. Eur. J. Inf. Syst. 20(1), 7–10 (2011)
Gläser, J., Laudel, G.: Experteninterviews und qualitative Inhaltsanalyse. VS Verlag für Sozialwissenschaften Wiesbaden (Germany) (2010)
Pedrinaci, C., Domingue, J.: Towards an ontology for process monitoring and mining. In: CEUR Workshop Proceedings, Innsbruck, Austria, pp. 76–87 (2007)
Van Hage, W.R., Ceolin, D.: The simple event model. In: van de Laar, P., Tretmans, J., Borth, M. (eds.) Situation Awareness with Systems of Systems, pp. 149–169. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6230-9_10
Xiong, J., Xiao, G., Kalayci, T.E., Montali, M., Gu, Z., Calvanese, D.: A virtual knowledge graph based approach for object-centric event logs extraction. In: Montali, M., Senderovich, A., Weidlich, M. (eds.) ICPM 2022. LNBP, vol. 468, pp. 466–478. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27815-0_34
Van der Aalst, W.: Decomposing process mining problems using passages. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-4_5
Zhu, L., Ghasemi-Gol, M., Szekely, P., Galstyan, A., Knoblock, C.A.: Unsupervised entity resolution on multi-type graphs. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 649–667. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_39
Beerepoot, I., et al.: The biggest business process management problems to solve before we die. Comput. Ind. 146(103837) (2023)
Acknowledgments
This work was supported by the Bayerisches Verbundforschungsprogramm (BayVFP) through the KIWI project (grant no. DIK0318/03).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rott, J., Dorsch, R., Freund, M., Böhm, M., Harth, A., Krcmar, H. (2024). Breaking Down Barriers with Knowledge Graphs: Data Integration for Cross-Organizational Process Mining. In: De Smedt, J., Soffer, P. (eds) Process Mining Workshops. ICPM 2023. Lecture Notes in Business Information Processing, vol 503. Springer, Cham. https://doi.org/10.1007/978-3-031-56107-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-56107-8_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56106-1
Online ISBN: 978-3-031-56107-8
eBook Packages: Computer ScienceComputer Science (R0)