Abstract
With our increasingly refined online browsing habits, the demand for high-grade recommendation systems has never been greater. Improvements constantly target general performance, evaluation, security, and explainability, but optimizing for serendipitous experiences is imperative since a serendipity-optimized recommender helps users discover unforeseen relevant content. Given that serendipity is a form of genuine unexpected experiences and recommenders are facilitators of user experiences, we aim at leveraging weak ties to explore their impact on serendipity. Weak links refer to social connections between individuals or groups that are not closely related or connected but can still provide valuable information and opportunities. On the other hand, the underlying social structure of recommender datasets can be misleading, rendering traditional network-based approaches ineffective. For that, we developed a network-inspired clustering mechanism to overcome this obstacle. This method elevates the system’s performance by optimizing models for unexpected content. By leveraging group weak ties, we aim to provide a novel perspective on the subject and suggest avenues for future research. Our study can also have practical implications for designing online platforms that enhance user experience by promoting unexpected discoveries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jannach, D., Jugovac, M.: Measuring the business value of recommender systems. ACM Trans. Manage. Inf. Syst. (TMIS) 10(4), 1–23 (2019)
Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput, Surv. (CSUR) 52(1), 1–38 (2019)
Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J.R., Zhang, Y.-C.: Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. 107(10), 4511–4515 (2010)
Argyriou, A., González-Fierro, M., Zhang, L.: Microsoft recommenders: best practices for production-ready recommendation systems. In: 2020 Companion Proceedings of the Web Conference, pp. 50–51 (2020)
Ricci, F., Rokach, L., Shapira, B.: Recommender systems: techniques, applications, and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook. Springer, New York (2022). https://doi.org/10.1007/978-1-0716-2197-4_1
Nabizadeh, A., Jorge, A., Leal, J.P.: Long term goal oriented recommender systems. In: 11th International Conference on Web Information Systems and Technologies (2015)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)
McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI’06 Extended Abstracts on Human Factors in Computing Systems, pp. 1097–1101 (2006)
Ma, T., Wang, X., Zhou, F., Wang, S.: Research on diversity and accuracy of the recommendation system based on multi-objective optimization. Neural Comput. Appl. 35(7), 5155–5163 (2023)
Yannam, V.R., Kumar, J., Babu, K.S., Patra, B.K.: Enhancing the accuracy of group recommendation using slope one. J. Supercomput. 79(1), 499–540 (2023)
Al Jurdi, W., Abdo, J.B., Demerjian, J., Makhoul, A.: Critique on natural noise in recommender systems. ACM Trans. Knowl. Disc. Data (TKDD) 15(5), 1–30 (2021)
Al Jurdi, W., Abdo, J.B., Demerjian, J., Makhoul, A.: Strategic attacks on recommender systems: an obfuscation scenario. In: 2022 IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2022)
Al Jurdi, W., Abdo, J.B., Demerjian, J., Makhoul, A.: Group validation in recommender systems: framework for multi-layer performance evaluation. arXiv preprint arXiv:2207.09320 (2022)
Pramod, D.: Privacy-preserving techniques in recommender systems: state-of-the-art review and future research agenda. Data Technol. Appl. 57(1), 32–55 (2023)
Chatti, M.A., Guesmi, M., Muslim, A.: Visualization for recommendation explainability: a survey and new perspectives. arXiv preprint arXiv:2305.11755 (2023)
Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)
Duricic, T., Lacic, E., Kowald, D., Lex, E.: Exploiting weak ties in trust-based recommender systems using regular equivalence. arXiv preprint arXiv:1907.11620 (2019)
Ramakrishnan, N., Keller, B.J., Mirza, B.J., Grama, A.Y., Karypis, G.: When being weak is brave: privacy in recommender systems. arXiv preprint cs/0105028 (2001)
Shokeen, J., Rana, C.: Social recommender systems: techniques, domains, metrics, datasets and future scope. J. Intell. Inf. Syst. 54(3), 633–667 (2020)
Al Jurdi, W., El Khoury Badran, M., Jaoude, C.A., Abdo, J.B., Demerjian, J., Makhoul, A.: Serendipity-aware noise detection system for recommender systems. In: Proceedings of the Information and Knowledge Engineering (2018)
Kotkov, D., Medlar, A., Glowacka, D.: Rethinking serendipity in recommender systems. In: Proceedings of the 2023 Conference on Human Information Interaction and Retrieval, pp. 383–387 (2023)
Wang, Y., Min, Y., Chen, X., Ji, W.: Multi-view graph contrastive representation learning for drug-drug interaction prediction. In: Proceedings of the Web Conference 2021, pp. 2921–2933 (2021)
Ziarani, R.J., Ravanmehr, R.: Serendipity in recommender systems: a systematic literature review. J. Comput. Sci. Technol. 36, 375–396 (2021)
Yan, E.: Serendipity: accuracy’s unpopular best friend in recommender systems. Towards Data Science, April 2020
Bhandari, U., Sugiyama, K., Datta, A., Jindal, R.: Serendipitous recommendation for mobile apps using item-item similarity graph. In: Banchs, R.E., Silvestri, F., Liu, T.-Y., Zhang, M., Gao, S., Lang, J. (eds.) AIRS 2013. LNCS, vol. 8281, pp. 440–451. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45068-6_38
Jenders, M., Lindhauer, T., Kasneci, G., Krestel, R., Naumann, F.: A serendipity model for news recommendation. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 111–123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24489-1_9
Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971)
Panagiotis, A.: On unexpectedness in recommender systems: or how to expect the unexpected. In: Proceedings of the Workshop on Novelty and Diversity in Recommender Systems (DiveRS 2011), at the 5th ACM International Conference on Recommender Systems (RecSys 2011), pp. 11–18 (2011)
Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378 (2011)
Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)
Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39718-2_23
Wang, X., He, X., Wang, M., Feng, F., Chua, T.-S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)
Al Jurdi, W., Abdo, J.B.: GitHub Repository: Optimizing Recommendations: A Contemporary Networks-inspired Approach, June 2023
Acknowledgments
This work has been supported by the Lebanese University Research Program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Al Jurdi, W., Bou Abdo, J., Demerjian, J., Makhoul, A. (2024). Exploring the Power of Weak Ties on Serendipity in Recommender Systems. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1144. Springer, Cham. https://doi.org/10.1007/978-3-031-53503-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-53503-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-53502-4
Online ISBN: 978-3-031-53503-1
eBook Packages: EngineeringEngineering (R0)