iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-53302-0_31
Exquisitor at the Video Browser Showdown 2024: Relevance Feedback Meets Conversational Search | SpringerLink
Skip to main content

Exquisitor at the Video Browser Showdown 2024: Relevance Feedback Meets Conversational Search

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14557))

Included in the following conference series:

  • 798 Accesses

Abstract

An important open problem in video retrieval and exploration concerns the generation and refinement of queries for complex tasks that standard methods are unable to solve, especially when the systems are used by novices. In conversational search, the proposed approach is to ask users to interactively refine the information provided to the search process, until results are satisfactory. In user relevance feedback (URF), the proposed approach is to ask users to interactively judge query results, which in turn refines the query used to retrieve the next set of suggestions. The question that we seek to answer in the long term is how to integrate these two approaches: can the query refinements of conversational search directly impact the URF model, and can URF judgments directly impact the conversational search? We extend the existing Exquisitor URF system with conversational search. In this version of Exquisitor, the two modes of interaction are separate, but the user interface has been completely redesigned to (a) prepare for future integration with conversational search and (b) better support novice users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amato, G., et al.: VISIONE at video browser showdown 2023. In: Dang-Nguyen, D.T., et al. (eds.) MMM 2023. LNCS, vol. 13833, pp. 615–621. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27077-2_48

    Chapter  Google Scholar 

  2. Arnold, R., Sauter, L., Schuldt, H.: Free-form multi-modal multimedia retrieval (4MR). In: Dang-Nguyen, D.T., et al. (eds.) MMM 2023. LNCS, vol. 13833, pp. 678–683. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27077-2_58

    Chapter  Google Scholar 

  3. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems 33, pp. 1877–1901 (2020)

    Google Scholar 

  4. Carreira, J., Noland, E., Hillier, C., Zisserman, A.: A short note on the kinetics-700 human action dataset. arXiv preprint arXiv:1907.06987 (2019)

  5. Dalton, J., Xiong, C., Callan, J.: CAsT 2020: the conversational assistance track overview. In: Proceedings of TREC (2021)

    Google Scholar 

  6. Guðmundsson, G.Þ., Jónsson, B.Þ., Amsaleg, L.: A large-scale performance study of cluster-based high-dimensional indexing. In: Proceedings of the International Workshop on Very-Large-Scale Multimedia Corpus, Mining and Retrieval (VLS-MCM), Firenze, Italy (2010)

    Google Scholar 

  7. Jagerman, R., Zhuang, H., Qin, Z., Wang, X., Bendersky, M.: Query expansion by prompting large language models. arXiv preprint arXiv:2305.03653 (2023)

  8. Jaided AI: EasyOCR. https://github.com/JaidedAI/EasyOCR

  9. Jónsson, B.Þ, Khan, O.S., Koelma, D.C., Rudinac, S., Worring, M., Zahálka, J.: Exquisitor at the video browser showdown 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 796–802. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_72

    Chapter  Google Scholar 

  10. Khan, O.S., et al.: Exquisitor at the video browser showdown 2021: relationships between semantic classifiers. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12573, pp. 410–416. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67835-7_37

    Chapter  Google Scholar 

  11. Khan, O.S., Jónsson, B.Þ.: User relevance feedback and novices: anecdotes from Exquisitor’s participation in interactive retrieval competitions. In: Proceedings of the Content-Based Multimedia Indexing, CBMI 2023, Orléans, France (2023)

    Google Scholar 

  12. Khan, O.S., et al.: Interactive learning for multimedia at large. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 495–510. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_33

    Chapter  Google Scholar 

  13. Khan, O.S., et al.: Exquisitor at the video browser showdown 2022. In: Þór Jónsson, B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 511–517. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_47

    Chapter  Google Scholar 

  14. Kratochvíl, M., Veselý, P., Mejzlík, F., Lokoč, J.: SOM-hunter: video browsing with relevance-to-SOM feedback loop. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 790–795. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_71

    Chapter  Google Scholar 

  15. Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023)

  16. Lokoč, J., et al.: Interactive video retrieval in the age of effective joint embedding deep models: lessons from the 11th VBS. Multimedia Syst. 29, 3481–3504 (2023)

    Article  Google Scholar 

  17. Lokoč, J., et al.: Interactive search or sequential browsing? A detailed analysis of the video browser showdown 2018. ACM TOMM 15(1), 1–18 (2019)

    Article  Google Scholar 

  18. Lokoč, J., Kovalčík, G., Souček, T.: VIRET at video browser showdown 2020. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 784–789. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_70

    Chapter  Google Scholar 

  19. Lokoč, J., et al.: Is the reign of interactive search eternal? Findings from the video browser showdown 2020. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 17(3), 1–26 (2021)

    Article  Google Scholar 

  20. Mao, K., Dou, Z., Qian, H.: Curriculum contrastive context denoising for few-shot conversational dense retrieval. In: Proceedings of the 45th International ACM SIGIR Conference, pp. 176–186 (2022)

    Google Scholar 

  21. Mettes, P., Koelma, D.C., Snoek, C.G.: The ImageNet shuffle: reorganized pre-training for video event detection. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, ICMR 2016, New York, NY, USA, pp. 175–182. Association for Computing Machinery (2016)

    Google Scholar 

  22. Nguyen, T.N., et al.: VideoCLIP: an interactive CLIP-based video retrieval system at VBS2023. In: Dang-Nguyen, D.T., et al. (eds.) MMM 2023. LNCS, vol. 13833, pp. 671–677. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27077-2_57

    Chapter  Google Scholar 

  23. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  24. Ragnarsdóttir, H., et al.: Exquisitor: breaking the interaction barrier for exploration of 100 million images. In: Proceedings of the ACM Multimedia, Nice, France (2019)

    Google Scholar 

  25. Sauter, L., Amiri Parian, M., Gasser, R., Heller, S., Rossetto, L., Schuldt, H.: Combining boolean and multimedia retrieval in vitrivr for large-scale video search. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 760–765. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_66

    Chapter  Google Scholar 

  26. Schoeffmann, K., Stefanics, D., Leibetseder, A.: diveXplore at the video browser showdown 2023. In: Dang-Nguyen, D.T., et al. (eds.) MMM 2023. LNCS, vol. 13833, pp. 684–689. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27077-2_59

    Chapter  Google Scholar 

  27. Song, W., He, J., Li, X., Feng, S., Liang, C.: QIVISE: a quantum-inspired interactive video search engine in VBS2023. In: Dang-Nguyen, D.T., et al. (eds.) MMM 2023. LNCS, vol. 13833, pp. 640–645. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27077-2_52

    Chapter  Google Scholar 

  28. Wang, L., Yang, N., Wei, F.: Query2doc: query expansion with large language models. arXiv preprint arXiv:2303.07678 (2023)

  29. Wei, J., et al.: Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652 (2021)

  30. Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language models. In: Advances in Neural Information Processing Systems 35, pp. 24824–24837 (2022)

    Google Scholar 

  31. Yu, W., et al.: Generate rather than retrieve: large language models are strong context generators. arXiv preprint arXiv:2209.10063 (2022)

  32. Zahálka, J., Rudinac, S., Worring, M.: Analytic quality: evaluation of performance and insight in multimedia collection analysis. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 231–240, New York, NY, USA. Association for Computing Machinery (2015)

    Google Scholar 

  33. Zahálka, J., Rudinac, S., Jónsson, B.Þ, Koelma, D.C., Worring, M.: Blackthorn: large-scale interactive multimodal learning. IEEE TMM 20(3), 687–698 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Icelandic Research Fund grant 239772-051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Shahbaz Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, O.S., Zhu, H., Sharma, U., Kanoulas, E., Rudinac, S., Jónsson, B.Þ. (2024). Exquisitor at the Video Browser Showdown 2024: Relevance Feedback Meets Conversational Search. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14557. Springer, Cham. https://doi.org/10.1007/978-3-031-53302-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53302-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53301-3

  • Online ISBN: 978-3-031-53302-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics