iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-51826-3_3
RuCIL: Enabling Privacy-Enhanced Edge Computing for Federated Learning | SpringerLink
Skip to main content

RuCIL: Enabling Privacy-Enhanced Edge Computing for Federated Learning

  • Conference paper
  • First Online:
Edge Computing – EDGE 2023 (EDGE 2023)

Abstract

Federated learning has emerged as a promising approach for collaborative machine learning while preserving data privacy in distributed settings. Despite recent advancements, challenges such as privacy preservation and communication overhead persist, limiting its practical utility. This work proposes a novel model - RuCIL - Resource utilization and Computational Impact metric-based model for Edge Learning that synergizes federated learning with edge computing, leveraging the computational capabilities of latest edge devices. By doing so, it optimizes privacy-preserving mechanisms and communication overhead of the model. This work not only addresses the limitations of federated learning but also paves the way for more efficient and privacy-conscious machine learning applications in distributed environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ju, W., et al.: A survey on federated learning: challenges and applications. International Journal of Machine Learning and Cybernetics, vol. 14, no. 2, Springer Science+Business Media, Nov. 2022, pp. 513–35. https://doi.org/10.1007/s13042-022-01647-y

  2. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019). https://doi.org/10.1109/JPROC.2019.2918951

    Article  MATH  Google Scholar 

  3. Brecko, A., Kajati, E., Koziorek, J., Zolotova, I.: Federated learning for edge computing: a survey. Appl. Sci. 12, 9124 (2022). https://doi.org/10.3390/app12189124

    Article  MATH  Google Scholar 

  4. Xia, Qi, et al.: A survey of federated learning for edge computing: research problems and solutions. High-Confidence Comput., 1(1), 100008 Elsevier BV, June (2021) . https://doi.org/10.1016/j.hcc.2021.100008

  5. Abreha, H.G., Hayajneh, M., Serhani, M.A.: Federated learning in edge computing: a systematic survey. Sensors. 22, 450 (2022). https://doi.org/10.3390/s22020450

    Article  MATH  Google Scholar 

  6. Lachner, C., Rausch, T., Dustdar, S.: Context-Aware Enforcement of Privacy Policies in Edge Computing. In: 2019 IEEE International Congress on Big Data (BigDataCongress), Milan, Italy, 2019, pp. 1-6, https://doi.org/10.1109/BigDataCongress.2019.00014

  7. Sirigu, G., Carminati, B., Ferrari, E.: ConPrEF: a context-based privacy enforcement framework for edge computing. In: 2023 IEEE International Conference on Edge Computing and Communications (EDGE), Chicago, IL, USA, 2023, pp. 72–78, https://doi.org/10.1109/EDGE60047.2023.00022

  8. Wang, L., et al.: Context-aware deep model compression for edge cloud computing. In: 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, Singapore, 2020, pp. 787–797, https://doi.org/10.1109/ICDCS47774.2020.00101

  9. Ma, Q., Xu, Y., Xu, H., Jiang, Z., Huang, L., Huang, H.: FedSA: a semi-asynchronous federated learning mechanism in heterogeneous edge computing. IEEE J. Sel. Areas Commun. 39(12), 3654–3672 (2021). https://doi.org/10.1109/JSAC.2021.3118435

    Article  MATH  Google Scholar 

  10. Zhang, Z., et al.: LSFL: a lightweight and secure federated learning scheme for edge computing. IEEE Trans. Inform. Foren. Security 18, 365-379 (2023). https://doi.org/10.1109/TIFS.2022.3221899

  11. Ye, Y., Li, S., Liu, F., Tang, Y., Hu, W.: EdgeFed: optimized federated learning based on edge computing. IEEE Access 8, 209191–209198 (2020). https://doi.org/10.1109/ACCESS.2020.3038287

    Article  Google Scholar 

  12. Ouyang, S., et al.: Communication optimization strategies for distributed deep neural network training: a survey. J. Parallel Distrib. Computi. 149, 52–65 Elsevier BV (Mar 2021). https://doi.org/10.1016/j.jpdc.2020.11.005

  13. Wang, Y., Xu, Y., Shi, Q., Chang, T.H.: Quantized federated learning under transmission delay and outage constraints. IEEE J. Selected Areas Commun. 40(1) 323–341 (2021). https://doi.org/10.1109/JSAC.2021.3126081

  14. Johnson, A.E.W., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  15. Hintjens, P., et al.: ZeroMQ. ZeroMQ Message Transport Protocol, 4.3.4. https://rfc.zeromq.org/spec/23/. Accessed 7 Oct 2023

  16. Google Inc. "gRPC." gRPC: A High Performance, Open Source Universal RPC Framework, https://grpc.io/. Accessed 7 Oct 2023

  17. Pustozerova, A., Mayer, R.: Information leaks in federated learning. In: Information Leaks in Federated Learning Network and Distributed System Security (NDSS) Symposium (2020). www.ndss-symposium.org/wp-content/uploads/2020/04/diss2020-23004-paper.pdf

  18. Mahendran, N.: Analysis of memory consumption by neural networks based on hyperparameters (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Ashish Nimsarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nimsarkar, S.A., Gupta, R.R., Ingle, R.B. (2024). RuCIL: Enabling Privacy-Enhanced Edge Computing for Federated Learning. In: Feng, J., Jiang, F., Luo, M., Zhang, LJ. (eds) Edge Computing – EDGE 2023 . EDGE 2023. Lecture Notes in Computer Science, vol 14205. Springer, Cham. https://doi.org/10.1007/978-3-031-51826-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51826-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51825-6

  • Online ISBN: 978-3-031-51826-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics