Abstract
The literature on cluster analysis methods evaluating the contribution of features to the emergence of the cluster structure for a given clustering partition is sparse. Despite advances in explainable supervised methods, explaining the outcomes of unsupervised algorithms is a less explored area. This paper proposes two post-hoc algorithms to determine feature importance for prototype-based clustering methods. The first approach assumes that the variation in the distance among cluster prototypes after marginalizing a feature can be used as a proxy for feature importance. The second approach, inspired by cooperative game theory, determines the contribution of each feature to the cluster structure by analyzing all possible feature coalitions. Multiple experiments using real-world datasets confirm the effectiveness of the proposed methods for both hard and fuzzy clustering settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
UC Irvine machine learning repository. https://archive-beta.ics.uci.edu/. Accessed 20 Nov 2022
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. AAPR, Springer, Boston, MA (1981). https://doi.org/10.1007/978-1-4757-0450-1
Bobek, S., Kuk, M., Szelażek, M., Nalepa, G.J.: Enhancing cluster analysis with explainable AI and multidimensional cluster prototypes. IEEE Access 10, 101556–101574 (2022)
Bora, D.J., Gupta, D., Kumar, A.: A comparative study between fuzzy clustering algorithm and hard clustering algorithm. arXiv preprint arXiv:1404.6059 (2014)
Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973). https://doi.org/10.1080/01969727308546046
Frost, N., Moshkovitz, M., Rashtchian, C.: ExKMC: expanding explainable k-means clustering. arXiv preprint arXiv:2006.02399 (2020)
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: XAI-Explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)
Kauffmann, J., Esders, M., Ruff, L., Montavon, G., Samek, W., Müller, K.R.: From clustering to cluster explanations via neural networks. IEEE Transactions on Neural Networks and Learning Systems (2022)
Lei, Y., Bezdek, J.C., Romano, S., Vinh, N.X., Chan, J., Bailey, J.: Ground truth bias in external cluster validity indices. Pattern Recogn. 65, 58–70 (2017)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems 30 (2017)
MacQueen, J.: Classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)
Montavon, G., Kauffmann, J., Samek, W., Müller, K.-R.: Explaining the predictions of unsupervised learning models. In: Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., Samek, W. (eds.) xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pp. 117–138. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04083-2_7
Oyewole, G.J., Thopil, G.A.: Data clustering: application and trends. Artif. Intell. Rev. 56, 6439–6475 (2022). https://doi.org/10.1007/s10462-022-10325-y
Peng, X., Li, Y., Tsang, I.W., Zhu, H., Lv, J., Zhou, J.T.: XAI beyond classification: interpretable neural clustering. J. Mach. Learn. Res. 23(6), 1–28 (2022)
Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster validation indexes. Int. J. Comput. Commun. 5(1), 27–34 (2011)
Ribeiro, M.T., Singh, S., Guestrin, C.: “ why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2016)
Shapley, L.S.: Notes on the N-Person Game — I: Characteristic-Point Solutions of the Four-Person Game. RAND Corporation, Santa Monica, CA (1951). https://doi.org/10.7249/RM0656
Steinhaus, H., et al.: Sur la division des corps matériels en parties. Bull. Acad. Pol. Sci. 1(804), 801 (1956)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Springer Nature Switzerland AG
About this paper
Cite this paper
Nápoles, G., Griffioen, N., Khoshrou, S., Güven, Ç. (2024). Feature Importance for Clustering. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469. Springer, Cham. https://doi.org/10.1007/978-3-031-49018-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-49018-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49017-0
Online ISBN: 978-3-031-49018-7
eBook Packages: Computer ScienceComputer Science (R0)