iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-49018-7_3
Feature Importance for Clustering | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14469))

Included in the following conference series:

  • 697 Accesses

Abstract

The literature on cluster analysis methods evaluating the contribution of features to the emergence of the cluster structure for a given clustering partition is sparse. Despite advances in explainable supervised methods, explaining the outcomes of unsupervised algorithms is a less explored area. This paper proposes two post-hoc algorithms to determine feature importance for prototype-based clustering methods. The first approach assumes that the variation in the distance among cluster prototypes after marginalizing a feature can be used as a proxy for feature importance. The second approach, inspired by cooperative game theory, determines the contribution of each feature to the cluster structure by analyzing all possible feature coalitions. Multiple experiments using real-world datasets confirm the effectiveness of the proposed methods for both hard and fuzzy clustering settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. UC Irvine machine learning repository. https://archive-beta.ics.uci.edu/. Accessed 20 Nov 2022

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. AAPR, Springer, Boston, MA (1981). https://doi.org/10.1007/978-1-4757-0450-1

    Book  MATH  Google Scholar 

  3. Bobek, S., Kuk, M., Szelażek, M., Nalepa, G.J.: Enhancing cluster analysis with explainable AI and multidimensional cluster prototypes. IEEE Access 10, 101556–101574 (2022)

    Google Scholar 

  4. Bora, D.J., Gupta, D., Kumar, A.: A comparative study between fuzzy clustering algorithm and hard clustering algorithm. arXiv preprint arXiv:1404.6059 (2014)

  5. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973). https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  MATH  Google Scholar 

  6. Frost, N., Moshkovitz, M., Rashtchian, C.: ExKMC: expanding explainable k-means clustering. arXiv preprint arXiv:2006.02399 (2020)

  7. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: XAI-Explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019)

    Google Scholar 

  8. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  9. Kauffmann, J., Esders, M., Ruff, L., Montavon, G., Samek, W., Müller, K.R.: From clustering to cluster explanations via neural networks. IEEE Transactions on Neural Networks and Learning Systems (2022)

    Google Scholar 

  10. Lei, Y., Bezdek, J.C., Romano, S., Vinh, N.X., Chan, J., Bailey, J.: Ground truth bias in external cluster validity indices. Pattern Recogn. 65, 58–70 (2017)

    Article  Google Scholar 

  11. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  12. MacQueen, J.: Classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  13. Montavon, G., Kauffmann, J., Samek, W., Müller, K.-R.: Explaining the predictions of unsupervised learning models. In: Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., Samek, W. (eds.) xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pp. 117–138. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04083-2_7

    Chapter  Google Scholar 

  14. Oyewole, G.J., Thopil, G.A.: Data clustering: application and trends. Artif. Intell. Rev. 56, 6439–6475 (2022). https://doi.org/10.1007/s10462-022-10325-y

  15. Peng, X., Li, Y., Tsang, I.W., Zhu, H., Lv, J., Zhou, J.T.: XAI beyond classification: interpretable neural clustering. J. Mach. Learn. Res. 23(6), 1–28 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster validation indexes. Int. J. Comput. Commun. 5(1), 27–34 (2011)

    Google Scholar 

  17. Ribeiro, M.T., Singh, S., Guestrin, C.: “ why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  18. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2016)

    Article  MathSciNet  Google Scholar 

  19. Shapley, L.S.: Notes on the N-Person Game — I: Characteristic-Point Solutions of the Four-Person Game. RAND Corporation, Santa Monica, CA (1951). https://doi.org/10.7249/RM0656

  20. Steinhaus, H., et al.: Sur la division des corps matériels en parties. Bull. Acad. Pol. Sci. 1(804), 801 (1956)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Nápoles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nápoles, G., Griffioen, N., Khoshrou, S., Güven, Ç. (2024). Feature Importance for Clustering. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469. Springer, Cham. https://doi.org/10.1007/978-3-031-49018-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49018-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49017-0

  • Online ISBN: 978-3-031-49018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics