iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-43990-2_74
SPR-Net: Structural Points Based Registration for Coronary Arteries Across Systolic and Diastolic Phases | SpringerLink
Skip to main content

SPR-Net: Structural Points Based Registration for Coronary Arteries Across Systolic and Diastolic Phases

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Systolic and diastolic registration of coronary arteries is a critical yet challenging step in coronary artery disease analysis. Most existing methods ignore the important relationship between vascular geometric shape and image contextual information in the two phases, leading to limited performance. In this paper, we propose a novel structural point registration network, which comprehensively captures both point-level geometric features and image-level semantic features as enriched feature representations to assist coronary registration. Specifically, given the systolic and diastolic CCTA images, our method improves coronary artery registration from three aspects. First, the point cloud encoder learns the spatial geometric features of the points in the 3D coronary mask to effectively capture the vascular shape representation. Second, a vision transformer (ViT) is employed to extract the image semantic information as a complementary condition of the geometric features to identify the bi-phasic correspondence of different vascular branches. Third, we design a transformer module to fuse the features across points and images to obtain the corresponding structural points in the two phases and then use structural points to guide the coronary artery registration via the thin-plate spline (TPS) method. We evaluated our method on a real-clinical dataset. Extensive experiments show that our proposed method significantly outperforms the state-of-the-art methods in coronary artery registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achenbach, S., et al.: Influence of heart rate and phase of the cardiac cycle on the occurrence of motion artifact in dual-source CT angiography of the coronary arteries. J. Cardiovasc. Comput. Tomogr. 6(2), 91–98 (2012)

    Article  Google Scholar 

  2. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Bayer, S., et al.: Intraoperative brain shift compensation using a hybrid mixture model. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 116–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_14

    Chapter  Google Scholar 

  5. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  6. Chen, N., et al.: Unsupervised learning of intrinsic structural representation points. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9121–9130 (2020)

    Google Scholar 

  7. Çimen, S., Gooya, A., Grass, M., Frangi, A.F.: Reconstruction of coronary arteries from X-ray angiography: a review. Med. Image Anal. 32, 46–68 (2016)

    Article  Google Scholar 

  8. Çimen, S., Gooya, A., Ravikumar, N., Taylor, Z.A., Frangi, A.F.: Reconstruction of coronary artery centrelines from X-Ray angiography using a mixture of student’s t-Distributions. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 291–299. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_34

    Chapter  Google Scholar 

  9. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Fu, K., Liu, Y., Wang, M.: Global registration of 3D cerebral vessels to its 2D projections by a new branch-and-bound algorithm. IEEE Trans. Med. Robot. Bionics 3(1), 115–124 (2021)

    Article  Google Scholar 

  11. Kim, B., Ye, J.C.: Diffusion deformable model for 4D temporal medical image generation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 539–548. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_51

  12. Li, Y., Harada, T.: Lepard: learning partial point cloud matching in rigid and deformable scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5554–5564 (2022)

    Google Scholar 

  13. Pan, Y., Christensen, G.E., Durumeric, O.C., Gerard, S.E., Reinhardt, J.M., Hugo, G.D.: Current-and varifold-based registration of lung vessel and airway trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–133 (2016)

    Google Scholar 

  14. Pang, J., et al.: High efficiency coronary MR angiography with nonrigid cardiac motion correction. Magn. Reson. Med. 76(5), 1345–1353 (2016)

    Article  Google Scholar 

  15. Schroeder, S., et al.: Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography: experience in 94 patients. Clin. Imaging 26(2), 106–111 (2002)

    Article  Google Scholar 

  16. Shechter, G., Resar, J.R., McVeigh, E.R.: Rest period duration of the coronary arteries: implications for magnetic resonance coronary angiography. Med. Phys. 32(1), 255–262 (2005)

    Article  Google Scholar 

  17. Smeets, D., Bruyninckx, P., Keustermans, J., Vandermeulen, D., Suetens, P.: Robust matching of 3D lung vessel trees. In: MICCAI Workshop on Pulmonary Image Analysis, vol. 2, pp. 61–70 (2010)

    Google Scholar 

  18. Timmis, A., et al.: European society of cardiology: cardiovascular disease statistics 2021. Eur. Heart J. 43(8), 716–799 (2022)

    Article  Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3523–3532 (2019)

    Google Scholar 

  21. Wang, Y., Yan, C., Feng, Y., Du, S., Dai, Q., Gao, Y.: STORM: structure-based overlap matching for partial point cloud registration. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 1135–1149 (2022)

    Article  Google Scholar 

  22. Weissman, N.J., Palacios, I.F., Weyman, A.E.: Dynamic expansion of the coronary arteries: implications for intravascular ultrasound measurements. Am. Heart J. 130(1), 46–51 (1995)

    Article  Google Scholar 

  23. Yang, J., Li, H., Campbell, D., Jia, Y.: Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2241–2254 (2015)

    Article  Google Scholar 

  24. Yao, L., et al.: TaG-Net: topology-aware graph network for centerline-based vessel labeling. IEEE Trans. Med. Imaging (2023)

    Google Scholar 

  25. Zhang, X., et al.: Progressive deep segmentation of coronary artery via hierarchical topology learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 391–400. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_38

Download references

Acknowledgment

This work was supported in part by National Natural Science Foundation of China (grant number 62131015, 62073260, 62203355), and Science and Technology Commission of Shanghai Municipality (STCSM) (grant number 21010502600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feihong Liu or Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X. et al. (2023). SPR-Net: Structural Points Based Registration for Coronary Arteries Across Systolic and Diastolic Phases. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14226. Springer, Cham. https://doi.org/10.1007/978-3-031-43990-2_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43990-2_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43989-6

  • Online ISBN: 978-3-031-43990-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics