iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-38430-1_1
Modified CNN-Watershed for Corneal Endothelium Segmentation: Image-to-Image Versus Sliding-Window Comparison | SpringerLink
Skip to main content

Modified CNN-Watershed for Corneal Endothelium Segmentation: Image-to-Image Versus Sliding-Window Comparison

  • Conference paper
  • First Online:
The Latest Developments and Challenges in Biomedical Engineering (PCBEE 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 746))

Included in the following conference series:

Abstract

This paper considers the problem of corneal endothelium image segmentation using a method that combines a CNN model with a watershed transform. Specifically, first CNN predicts cell bodies, edges, and centers. Next, cell centers are used as markers that guide the watershed transform performed concerning the cell edge probability maps inferred by the CNN to outline cell edges. Different variants of the method are considered. Specifically, a downscaled U-Net is compared with the Attention U-Net in the image-to-image and sliding window setup. Results show that using a marker-driven watershed transform to post-process cell edge probability maps allows for replacing the sliding window setup with an image-to-image setup, reducing prediction time while maintaining similar or better segmentation accuracy. Also, when used as a backbone, Attention U-Net outperforms classical U-Net in determining cell morphometric parameters with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 9351 of LNCS, pp. 234–241. Springer (2015)

    Google Scholar 

  2. Fabijańska, A.: Segmentation of corneal endothelium images using a u-net-based convolutional neural network. Artif. Intell. Med. 88, 1–13 (2018). https://doi.org/10.1016/j.artmed.2018.04.004

    Article  Google Scholar 

  3. Daniel, M., Atzrodt, L., Bucher, F., Wacker, K., Böhringer, S., Reinhard, T., Böhringer, D.: Automated segmentation of the corneal endothelium in a large set of “real-world’’ specular microscopy images using the u-net architecture. Sci. Rep. 9, 4752 (2019). https://doi.org/10.1038/s41598-019-41034-2

    Article  Google Scholar 

  4. Vigueras-Guillén, J.P., Sari, B., Goes, S.F., Lemij, H.G., van Rooij, J., Vermeer, K.A., van Vliet, L.J.: Fully convolutional architecture versus sliding-window CNN for corneal endothelium cell segmentation. BMC Biomed. Eng. 1, 4 (2019). https://doi.org/10.1186/s42490-019-0003-2

    Article  Google Scholar 

  5. Kucharski, A., Fabijańska, A.: CNN-watershed: a watershed transform with predicted markers for corneal endothelium image segmentation. Biomed. Signal Process. Control 68, 102805 (2021). https://doi.org/10.1016/j.bspc.2021.102805

    Article  Google Scholar 

  6. Vigueras-Guillén, J.P., van Rooij, J., van Dooren, B.T.H., Lemij, H.G., Islamaj, E., van Vliet, L.J., Vermeer, K.A.: Denseunets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae (2022). https://doi.org/10.48550/ARXIV.2203.01882. arxiv:2203.01882

  7. Zhang, Y., Higashita, R., Fu, H., Xu, Y., Zhang, Y., Liu, H., Zhang, J., Liu, J.: A multi-branch hybrid transformer network for corneal endothelial cell segmentation. In: de Bruijne, M, Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) Medical Image Computing and Computer Assisted Intervention—MICCAI 2021, pp. 99–108. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_10

  8. Selig, B., Vermeer, K.A., Rieger, B., Hillenaar, T., Hendriks, C.L.L.: Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy. BMC Med. Imaging 15(1), 13 (2015). https://doi.org/10.1186/s12880-015-0054-3

    Article  Google Scholar 

  9. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, Hammerla, N.Y., Kainz, B., Glocker, B., Rueckert, D.: Attention u-net: learning where to look for the pancreas (2018). https://doi.org/10.48550/ARXIV.1804.03999. arxiv:1804.03999

  10. Li, C., Tam, P.: An iterative algorithm for minimum cross entropy thresholding. Pattern Recogn. Lett. 19(8), 771–776 (1998). https://doi.org/10.1016/s0167-8655(98)00057-9

  11. Dubuisson, M.-P., Jain, A.: A modified hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 566–568 (1994). https://doi.org/10.1109/ICPR.1994.576361

  12. Freedman, D., Pisani, R., Purves, R.: Statistics (international student edition), Pisani, R. Purves, 4th edn. WW Norton & Company, New York

    Google Scholar 

  13. Sha, Y.: Keras-u-net-collection (2021). https://github.com/yingkaisha/keras-unet-collection. https://doi.org/10.5281/zenodo.5449801

  14. Vigueras-Guillén, J.P., Sari, B., Goes, S.F., Lemij, H.G., van Rooij, J., Vermeer, K.A., van Vliet, L.J.: Fully convolutional architecture versus sliding-window CNN for corneal endothelium cell segmentation. BMC Biomed. Eng. 1(1) (2019). https://doi.org/10.1186/s42490-019-0003-2

  15. Nurzynska, K.: Deep learning as a tool for automatic segmentation of corneal endothelium images. Symmetry 10(3). https://doi.org/10.3390/sym10030060. https://www.mdpi.com/2073-8994/10/3/60

  16. Ruggeri, A., Scarpa, F., Luca, M.D., Meltendorf, C., Schroeter, J.: A system for the automatic estimation of morphometric parameters of corneal endothelium in Alizarine red-stained images. Br. J. Ophthalmol 94(5), 643–647 (2010). arXiv:https://bjo.bmj.com/content/94/5/643.full.pdf, https://doi.org/10.1136/bjo.2009.166561. https://bjo.bmj.com/content/94/5/643

  17. Piórkowski, A.: Best-fit segmentation created using flood-based iterative thinning. In: Advances in Intelligent Systems and Computing, pp. 61–68. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-47274-4_7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Kucharski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kucharski, A., Fabijańska, A. (2024). Modified CNN-Watershed for Corneal Endothelium Segmentation: Image-to-Image Versus Sliding-Window Comparison. In: Strumiłło, P., Klepaczko, A., Strzelecki, M., Bociąga, D. (eds) The Latest Developments and Challenges in Biomedical Engineering. PCBEE 2023. Lecture Notes in Networks and Systems, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-031-38430-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38430-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38429-5

  • Online ISBN: 978-3-031-38430-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics