iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-36805-9_2
Modified Differential Evolution Algorithm Applied to Economic Load Dispatch Problems | SpringerLink
Skip to main content

Modified Differential Evolution Algorithm Applied to Economic Load Dispatch Problems

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13956 ))

Included in the following conference series:

  • 776 Accesses

Abstract

This paper proposes a modification of the Differential Evolution (DE) algorithm to solve the problem of Economic Load Dispatch (ELD). DE is an algorithm based on the theory of natural selection of species, where the fittest are more likely to survive. In the original DE, each possible solution to the target problem composes an initial population. This population evolved through genetic operators of mutation, selection, and crossover of individuals. In each iteration of the DE, the newly generated population replaces and discards the old population input. At the end of execution, the DE should return the best solution found. The Modification of the Differential Evolution (MDE) present in this paper considers that, in the selection stage, the ablest individual will replace the old one in the current population instead of being inserted in the new sample. To verify the performance of the MDE about the original DE, we solve a set of test functions to obtain the global minimum and different instances of the ELD. Both algorithms were effective in minimizing the three least-dimensional functions. Our results showed that DE proved more effective than MDE in minimizing the set of higher dimensional test functions, presenting a solution up to 99.99% better. However, none of the algorithms managed to obtain the optimal solution. In the ELD resolution, where it is to find the production level of each thermoelectric generating unit, satisfying the total system demand at the lowest cost, MDE was more effective than DE in all cases, finding a solution up to 1.10% better, solving the constraints of the problem. In addition, the computation time reduction of MDE concerning DE was up to 95.98%. Therefore, we confirm the efficiency of the proposed modification over the original DE version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at: https://github.com/gabriella-andrade/DifferentialEvolution.

References

  1. Andrade, G.L.: Algoritmo evolução diferencial modificado aplicado ao problema do despacho econômico de carga. Master thesis, Federal University of Pampa, Alegrete (2020)

    Google Scholar 

  2. BEN: Balanço energético nacional 2018: Ano base 2017/empresa de pesquisa energética. Technical report, EPE, Rio de Janeiro (2018)

    Google Scholar 

  3. De Carvalho, L., Morais, M.d.F., Ceolho, L.d.S., Da Rocha, R.P., Beline, E.L.: Evolução diferencial: Características dos métodos de solução para programação em ambientes flow shop permutacional. In: Anais do XXXVI Encontro Nacional de Engenharia de Produção. ABEPRO, João Pessoa, PB (2016)

    Google Scholar 

  4. De Oliveira, K.W.R.C.B., Nascimento Jr., N.T., Saavedra, O.R.: Uma abordagem via estratégias evolutivas para o despacho econômico considerando restrições de geração. IEEE Latin America Trans. 6(1), 42–50 (2008)

    Google Scholar 

  5. Dos Santos, J.O., Kapelinski, K., dos Santos, E.M., Juchem Neto, J.P.: Resolução de um problema de despacho econômico de carga utilizando enxames de partículas e vaga-lumes. Proc. Ser. Braz. Soc. Comput. Appl. Math. 6(1) (2018)

    Google Scholar 

  6. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: 1995 Proceedings of the 6th International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE (1995)

    Google Scholar 

  7. Gaing, Z.L.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 18(3), 1187–1195 (2003)

    Article  Google Scholar 

  8. Gomez-Exposito, A., Conejo, A.J., Canizares, C.: Electric Energy Systems: Analysis and Operation. CRC Press (2009)

    Google Scholar 

  9. Qin, Q., Cheng, S., Chu, X., Lei, X., Shi, Y.: Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization. Appl. Soft Comput. 59, 229–242 (2017)

    Article  Google Scholar 

  10. Serapião, A.B.d.S.: Fundamentos de otimização por inteligência de enxames: uma visão geral. Sba: Controle & Automação Sociedade Brasileira de Automatica 20(3), 271–304 (2009)

    Google Scholar 

  11. Simon, C.P., Blume, L.: Matemática para Economistas. Bookman, Porto Alegre - RS (2004)

    Google Scholar 

  12. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. ICSI, Berkeley (1995)

    Google Scholar 

  14. Tolmasquim, M.T.: Energia termelétrica: gás natural, biomassa, carvão e nuclear. Rio de Janeiro: EPE (2016)

    Google Scholar 

  15. Walters, D.C., Sheble, G.B.: Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans. Power Syst. 8(3), 1325–1332 (1993)

    Article  Google Scholar 

  16. Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput. 12(3), 1180–1186 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Schepke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrade, G.L., Schepke, C., Lucca, N., Neto, J.P.J. (2023). Modified Differential Evolution Algorithm Applied to Economic Load Dispatch Problems. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36805-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36804-2

  • Online ISBN: 978-3-031-36805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics