Abstract
This paper proposes a modification of the Differential Evolution (DE) algorithm to solve the problem of Economic Load Dispatch (ELD). DE is an algorithm based on the theory of natural selection of species, where the fittest are more likely to survive. In the original DE, each possible solution to the target problem composes an initial population. This population evolved through genetic operators of mutation, selection, and crossover of individuals. In each iteration of the DE, the newly generated population replaces and discards the old population input. At the end of execution, the DE should return the best solution found. The Modification of the Differential Evolution (MDE) present in this paper considers that, in the selection stage, the ablest individual will replace the old one in the current population instead of being inserted in the new sample. To verify the performance of the MDE about the original DE, we solve a set of test functions to obtain the global minimum and different instances of the ELD. Both algorithms were effective in minimizing the three least-dimensional functions. Our results showed that DE proved more effective than MDE in minimizing the set of higher dimensional test functions, presenting a solution up to 99.99% better. However, none of the algorithms managed to obtain the optimal solution. In the ELD resolution, where it is to find the production level of each thermoelectric generating unit, satisfying the total system demand at the lowest cost, MDE was more effective than DE in all cases, finding a solution up to 1.10% better, solving the constraints of the problem. In addition, the computation time reduction of MDE concerning DE was up to 95.98%. Therefore, we confirm the efficiency of the proposed modification over the original DE version.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Available at: https://github.com/gabriella-andrade/DifferentialEvolution.
References
Andrade, G.L.: Algoritmo evolução diferencial modificado aplicado ao problema do despacho econômico de carga. Master thesis, Federal University of Pampa, Alegrete (2020)
BEN: Balanço energético nacional 2018: Ano base 2017/empresa de pesquisa energética. Technical report, EPE, Rio de Janeiro (2018)
De Carvalho, L., Morais, M.d.F., Ceolho, L.d.S., Da Rocha, R.P., Beline, E.L.: Evolução diferencial: Características dos métodos de solução para programação em ambientes flow shop permutacional. In: Anais do XXXVI Encontro Nacional de Engenharia de Produção. ABEPRO, João Pessoa, PB (2016)
De Oliveira, K.W.R.C.B., Nascimento Jr., N.T., Saavedra, O.R.: Uma abordagem via estratégias evolutivas para o despacho econômico considerando restrições de geração. IEEE Latin America Trans. 6(1), 42–50 (2008)
Dos Santos, J.O., Kapelinski, K., dos Santos, E.M., Juchem Neto, J.P.: Resolução de um problema de despacho econômico de carga utilizando enxames de partículas e vaga-lumes. Proc. Ser. Braz. Soc. Comput. Appl. Math. 6(1) (2018)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: 1995 Proceedings of the 6th International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE (1995)
Gaing, Z.L.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 18(3), 1187–1195 (2003)
Gomez-Exposito, A., Conejo, A.J., Canizares, C.: Electric Energy Systems: Analysis and Operation. CRC Press (2009)
Qin, Q., Cheng, S., Chu, X., Lei, X., Shi, Y.: Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization. Appl. Soft Comput. 59, 229–242 (2017)
Serapião, A.B.d.S.: Fundamentos de otimização por inteligência de enxames: uma visão geral. Sba: Controle & Automação Sociedade Brasileira de Automatica 20(3), 271–304 (2009)
Simon, C.P., Blume, L.: Matemática para Economistas. Bookman, Porto Alegre - RS (2004)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)
Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. ICSI, Berkeley (1995)
Tolmasquim, M.T.: Energia termelétrica: gás natural, biomassa, carvão e nuclear. Rio de Janeiro: EPE (2016)
Walters, D.C., Sheble, G.B.: Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans. Power Syst. 8(3), 1325–1332 (1993)
Yang, X.S., Hosseini, S.S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl. Soft Comput. 12(3), 1180–1186 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Andrade, G.L., Schepke, C., Lucca, N., Neto, J.P.J. (2023). Modified Differential Evolution Algorithm Applied to Economic Load Dispatch Problems. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-36805-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36804-2
Online ISBN: 978-3-031-36805-9
eBook Packages: Computer ScienceComputer Science (R0)