iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-36004-6_56
Creating a Positive Reframing Dictionary Using Machine Learning | SpringerLink
Skip to main content

Creating a Positive Reframing Dictionary Using Machine Learning

  • Conference paper
  • First Online:
HCI International 2023 Posters (HCII 2023)

Abstract

Positive reframing is a cognitive process that involves giving negative events a new positive interpretation, leading to positive behavioral options and perceptions. Our research project aims to promote positive emotions by presenting positive reframing sentences to the negative ones the user has entered using a keyboard. To achieve this, we propose using GPT-3, a natural language processing model, to generate a large number of reframing dictionary entries in a short time. We trained GPT-3 on manually generated reframing pairs and tested it on new negative sentences. Our results show that, with three or more pairs of training data, GPT-3 can generally reframe negative sentences as expected. Our technique can be used to construct a high-quality reframing dictionary, which can help promote positive emotions and well-being.

This work is supported by JSPS KAKENHI Grant Number JP20K11904.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvo, R.A., Peters, D.: Positive Computing: Technology for Wellbeing and Human Potential. MIT Press, Cambridge (2014)

    Google Scholar 

  2. Lambert, N.M., Fincham, F.D., Stillman, T.F.: Gratitude and depressive symptoms: the role of positive reframing and positive emotion. Cogn. Emot. 26(4), 615–633 (2012)

    Article  Google Scholar 

  3. Cavanaugh, M.A., Boswell, W.R., Roehling, M.V., Boudreau, J.W.: An empirical examination of self-reported work stress among U.S. managers. J. Appl. Psychol. 85(1), 65–74 (2000)

    Google Scholar 

  4. Seligman, M.E.P.: The Optimistic Child: A Proven Program to Safeguard Children Against Depression and Build Lifelong Resilience. HarperOne, California (2007)

    Google Scholar 

  5. Go, K., Moriya, Y., Kinoshita, Y., Li, J., Fukumoto, F.: Happy text entering: promoting subjective well-being using an input method for presenting positive words and phrases. In: Proceedings of the 2022 Conference, pp. 153–158. ACM (2022). https://doi.org/10.1145/3520495.3520521

  6. Turney, P.D.: Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (ACL 2002), pp. 417–424. Association for Computational Linguistics, USA (2002). https://doi.org/10.3115/1073083.1073153

  7. Mohammad, S.M., Turney, P.D.: Crowdsourcing a Word-Emotion Association Lexicon. Comput. Intell. 29(3), 436–465 (2013). https://doi.org/10.1111/j.1467-8640.2012.00460.x

    Article  MathSciNet  Google Scholar 

  8. Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: using mechanical turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 26–34. Association for Computational Linguistics, Los Angeles, CA (2010)

    Google Scholar 

  9. Saif, H., He, Y., Fernandez, M., Alani, H.: Adapting sentiment lexicons using contextual semantics for sentiment analysis of Twitter. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 54–63. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11955-7_5

    Chapter  Google Scholar 

  10. Preoţiuc-Pietro, D., et al.: The role of personality, age, and gender in tweeting about mental illness. In: 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, pp. 21–30. Association for Computational Linguistics, Denver, Colorado (2015). https://doi.org/10.3115/v1/W15-1203

  11. Muhammad, A., Wiratunga, N., Lothian, R.: Contextual sentiment analysis for social media genres. Knowl.-Based Syst. 108, 92–101 (2016). https://doi.org/10.1016/j.knosys.2016.05.032

    Article  Google Scholar 

  12. OpenAI: GPT-3. https://openai.com/. Accessed 15 Mar 2023

  13. Dathathri, S., et al.: Plug and play language models: a simple approach to controlled text generation. arXiv preprint https://arxiv.org/abs/1912.02164 (2019)

  14. Elicit. https://elicit.org/. Accessed 15 Mar 2023

  15. Ought. https://ought.org/. Accessed 15 Mar 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Go .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fukasawa, H., Go, K., Fukumoto, F., Li, J., Kinoshita, Y. (2023). Creating a Positive Reframing Dictionary Using Machine Learning. In: Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G. (eds) HCI International 2023 Posters. HCII 2023. Communications in Computer and Information Science, vol 1836. Springer, Cham. https://doi.org/10.1007/978-3-031-36004-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36004-6_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36003-9

  • Online ISBN: 978-3-031-36004-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics