Abstract
Plaintext structures are a commonly-used technique for improving differential cryptanalysis. Generally, there are two types of plaintext structures: multiple-differential structures and truncated-differential structures. Both types have been widely used in cryptanalysis of S-box-based ciphers while for SPECK, an Addition-Rotation-XOR (ARX) cipher, the truncated-differential structure has not been used so far. In this paper, we investigate the properties of modular addition and propose a method to construct truncated-differential structures for SPECK. Moreover, we show that a combination of both types of structures is also possible for SPECK. For recovering the key of SPECK, we propose dedicated algorithms and apply them to various differential distinguishers, which helps to obtain a series of improved attacks on all variants of SPECK. The results show that the combination of both structures helps to improve the data and time complexity at the same time, as in the cryptanalysis of S-box-based ciphers.
Z. Feng and Y. Luo—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This precomputed table takes a small memory of \(2^{3\times (2\times \min \{a,n_{\textsf{BIL}}\}-y)}\).
References
Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 525–545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_27
Bao, Z., Guo, J., Liu, M., Ma, L., Tu, Y.: Enhancing differential-neural cryptanalysis. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13791, pp. 318–347. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22963-3_11
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive (2013)
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563
Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_34
Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_1
Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 546–570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_28
Biryukov, A., dos Santos, L.C., Teh, J.S., Udovenko, A., Velichkov, V.: Meet-in-the-filter and dynamic counting with applications to SPECK. Cryptology ePrint Archive (2022)
Chen, J., Wang, M., Preneel, B.: Impossible differential cryptanalysis of the lightweight block ciphers TEA, XTEA and HIGHT. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 117–137. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31410-0_8
Dinur, I.: Improved differential cryptanalysis of round-reduced SPECK. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_9
Feng, Z., Luo, Y., Wang, C., Yang, Q., Liu, Z., Song, L.: Improved differential cryptanalysis on SPECK using plaintext structures. Cryptology ePrint Archive (2023)
Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algorithms for differential and linear trails for SPECK. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_14
Gohr, A.: Improving attacks on round-reduced SPECK32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6
Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W., Lee, S.: Differential cryptanalysis of TEA and XTEA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 402–417. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_30
Lee, H., Kim, S., Kang, H., Hong, D., Sung, J., Hong, S.: Calculating the approximate probability of differentials for ARX-based cipher using SAT solver. J Korea Inst. Inf. Secur. Cryptol. 28(1), 15–24 (2018)
Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey with partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_14
Liu, Z., Li, Y., Jiao, L., Wang, M.: A new method for searching optimal differential and linear trails in ARX ciphers. IEEE Trans. Inf. Theory 67(2), 1054–1068 (2020)
Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9_7
Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible differential cryptanalysis of reduced round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_4
Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2008)
Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 379–394. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_24
Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear characteristics with the SAT method. IACR Trans. Symmetric Cryptol. 269–315 (2021)
Wang, F., Wang, G.: Improved differential-linear attack with application to round-reduced SPECK32/64. In: Ateniese, G., Venturi, D. (eds.) ACNS 2022. LNCS, pp. 792–808. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09234-3_39
Acknowledgement
The authors would like to thank anonymous reviewers for their helpful comments and suggestions. The work of this paper was supported by the National Natural Science Foundation of China (Grants 62022036, 62132008, 62202460).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Feng, Z., Luo, Y., Wang, C., Yang, Q., Liu, Z., Song, L. (2023). Improved Differential Cryptanalysis on SPECK Using Plaintext Structures. In: Simpson, L., Rezazadeh Baee, M.A. (eds) Information Security and Privacy. ACISP 2023. Lecture Notes in Computer Science, vol 13915. Springer, Cham. https://doi.org/10.1007/978-3-031-35486-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-35486-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35485-4
Online ISBN: 978-3-031-35486-1
eBook Packages: Computer ScienceComputer Science (R0)