iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-33783-3_10
Robust Zero-Watermarking for Medical Images Based on Deep Learning Feature Extraction | SpringerLink
Skip to main content

Robust Zero-Watermarking for Medical Images Based on Deep Learning Feature Extraction

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2023)

Abstract

Internet data transfer has increased in recent years, as well as the need to generate protection and authentication of multimedia data. The use of watermarks on digital images serves for copyright protection and ownership authentication. Zero-watermarking does not embed the watermark into the host image. The imperceptibility of the watermark is required for some tasks without modifying pixels on the image, such as medical images, because the medical image has a low distortion and may generate a wrong diagnosis. In this paper, we propose a zero-watermarking algorithm for medical images with patient authentication purposes and avoid image tampering based on a deep learning neural network model as a feature extractor using the Context Encoder. Thus, is extracted a feature map with the most representative image features. Therefore, an or-exclusive is applied to merge the watermark sequence and the extracted feature map. The watermark signal consists of a pseudorandom sequence and contains the patient’s information. The bit error rate and the normalized cross-correlation demonstrate the robustness of the zero-watermark technique against geometric and image processing attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Neymeen, H., Boles, W., Boyd, C.: A review of medical image watermarking requirements for technology, J. Digit Imaging 26(2), 326–343 (2013). https://doi.org/10.1007/s10278-012-9527-x

  2. Oueslati, S., Cherif, A., Solaimane, B.: Adaptive image watermarking scheme based on neural network. Int. J. Eng. Sci. Technol. 3(1), 748–757 (2011). https://doi.org/10.1155/2018/2685739

    Article  Google Scholar 

  3. Garcia-Nonoal, Z., Mata-Mendoza, D., Hernandez, C., Nakano-Miyatake, M.: Secure management of retinal imaging based on deep learning and reversible data hiding. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02778-1

  4. Hosny, K., Darwish, M., Fouda, M.: New color image zero-watermarking using orthogonal multi-channel fractional-order legndre-fourier moments. IEEE Access 9, 91209–91219 (2021). https://doi.org/10.1109/access.2021.3091614

    Article  Google Scholar 

  5. Magdy, M., Ghali, N., Ghoniemy, S., Hosny, K.: Multiple zero-watermarking of medical images for internet of medical things. IEEE Access 10, 38821–38831 (2022). https://doi.org/10.1109/access.2022.3165813

    Article  Google Scholar 

  6. Huang, T., Xu, J., Yang, Y., Han, B.: Robust zero-watermarking algorithm for medical images using double-tree complex wavelet transform and hessenberg descomposition. Adv. Pattern Recogn. Image Anal. 10(7), 1154 (2022). https://doi.org/10.3390/math10071154

  7. Qin, F., Li, J., Li, H., Liu, J., Nawaz, S.A., Liu, Y.: A robust zero-watermarking algorithm for medical images using curvelet-DCT and RSA pseudo-random sequences. In: Sun, X., Wang, J., Bertino, E. (eds.) ICAIS 2020. LNCS, vol. 12240, pp. 179–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57881-7_16

    Chapter  Google Scholar 

  8. Hamamoto, I., Kawamura, M.: Image watermarking technique using embedder and extractor neural networks. In: IEICE Transactions on Information and Systems, Special Section on Enriched Multimedia - Making Multimedia More Convenient and Safer, E102.D(1), pp. 19–30, (2019). https://doi.org/10.1587/transinf.2018MUP0006

  9. Han, B., Du, J., Jia, Y., Zhu, H.: Zero-watermarking algorithm for medical image based on VGG19 deep convolution neural network. J. Healthc. Eng. 2021, 5551520 (2021). https://doi.org/10.1155/2021/5551520

  10. Pathak, D., krähenbühl, P., Donahue, J., Darrell, T., Efros, A.: Context encoders: feature learning by inpainting. Comput. Vis. Pattern Recogn. 1 (2016). https://doi.org/10.48550/arXiv.1604.073

  11. Ganguly, K.: Learning Generative Adversarial Networks. Packt Publishers Ltd., Brimingham, United Kingdom (2017)

    Google Scholar 

  12. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. In: International Conference on Machine Learning (2017)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial networks. In: Computer and Information Sciences (2014). https://doi.org/10.48550/arXiv.1406.2661

  14. Raikote, P.: Kaggle. https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset?select=Covid19-dataset. Accessed 25 Dec 2021

  15. Jitsumatsu, Y., Khan, T., Hattori, Y., Kohda, T.: Bit error rate in digital watermarking systems using spread spectrum techniques. In: de Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Program and Book of Abstracts (IEEE Cat. No.04TH8738), Sydney, NSW, Australia (2004)

    Google Scholar 

  16. Ren, N., Zhao, Y., Zhu, C., Zhou y, Q., Xu, D.: Copyright protection based on zero watermarking and blockchain for vector maps. Int. J. Geo-Inf. 10(5), 294 (2021). https://doi.org/10.3390/ijgi10050294

  17. Fierro-Radilla, A., Nakano Miyatake, M., Cedillo-Hernandez, M., Cleofas-Sanchez y, L., Perez-Meana, H.: A robust image zero-watermarking using convolutional neural networks. In: de 2019 7th International Workshop on Biometrics and Forensics (IWBF), Cancun, Mexico (2019). https://doi.org/10.1109/IWBF.2019.8739245

Download references

Acknowledgments

The authors thank the Instituto Politécnico Nacional (IPN), as well as the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the support provided during the realization of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Eduardo Arevalo-Ancona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arevalo-Ancona, R.E., Cedillo-Hernandez, M., Ramirez-Rodriguez, A.E., Nakano-Miyatake, M., Perez-Meana, H. (2023). Robust Zero-Watermarking for Medical Images Based on Deep Learning Feature Extraction. In: Rodríguez-González, A.Y., Pérez-Espinosa, H., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2023. Lecture Notes in Computer Science, vol 13902. Springer, Cham. https://doi.org/10.1007/978-3-031-33783-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33783-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33782-6

  • Online ISBN: 978-3-031-33783-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics