Abstract
The pericardium is a thin membrane sac that covers the heart. As such, the segmentation of the pericardium in computed tomography (CT) can have several clinical applications, namely as a preprocessing step for extraction of different clinical parameters. However, manual segmentation of the pericardium can be challenging, time-consuming and subject to observer variability, which has motivated the development of automatic pericardial segmentation methods.
In this study, a method to automatically segment the pericardium in CT using a U-Net framework is proposed. Two datasets were used in this study: the publicly available Cardiac Fat dataset and a private dataset acquired at the hospital centre of Vila Nova de Gaia e Espinho (CHVNGE).
The Cardiac Fat database was used for training with two different input sizes - 512 \(\times \) 512 and 256 \(\times \) 256. A superior performance was obtained with the 256 \(\times \) 256 image size, with a mean Dice similarity score (DCS) of 0.871 ± 0.01 and 0.807 ± 0.06 on the Cardiac Fat test set and the CHVNGE dataset, respectively.
Results show that reasonable performance can be achieved with a small number of patients for training and an off-the-shelf framework, with only a small decrease in performance in an external dataset. Nevertheless, additional data will increase the robustness of this approach for difficult cases and future approaches must focus on the integration of 3D information for a more accurate segmentation of the lower pericardium.
This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within projects DSAIPA/AI/0083/2020 and LA/P/0063/2020.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cardiac fat database - computed tomography. http://visual.ic.uff.br/en/cardio/ctfat/index.php. Accessed 20 Feb 2022
Alexopoulos, N., McLean, D.S., Janik, M., Arepalli, C.D., Stillman, A.E., Raggi, P.: Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210(1), 150–154 (2010)
Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Mathem. Softw. (TOMS) 22(4), 469–483 (1996)
Commandeur, F., et al.: Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study. Radiol. Artif. Intell. 1(6), e190045 (2019)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
Hajar, R.: Risk factors for coronary artery disease: historical perspectives. Heart Views Official J. Gulf Heart Assoc. 18(3), 109 (2017)
Li, X., Liu, Y., Wang, Y., Yan, D.: Computing homography with RANSAC algorithm: a novel method of registration. In: Electronic Imaging and Multimedia Technology IV, vol. 5637, pp. 109–112. SPIE (2005)
Militello, C., et al.: A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans. Comput. Biol. Med. 114, 103424 (2019)
Morin, R.L., Gerber, T.C., McCollough, C.H.: Radiation dose in computed tomography of the heart. Circulation 107(6), 917–922 (2003)
Okrainec, K., Banerjee, D.K., Eisenberg, M.J.: Coronary artery disease in the developing world. Am. Heart J. 148(1), 7–15 (2004)
Rodrigues, É.O., Morais, F., Morais, N., Conci, L., Neto, L., Conci, A.: A novel approach for the automated segmentation and volume quantification of cardiac fats on computed tomography. Comput. Methods Programs Biomed. 123, 109–128 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)
Talman, A.H., Psaltis, P.J., Cameron, J.D., Meredith, I.T., Seneviratne, S.K., Wong, D.T.: Epicardial adipose tissue: far more than a fat depot. Cardiovas. Diagn. Ther. 4(6), 416 (2014)
Zhang, Q., Zhou, J., Zhang, B., Jia, W., Wu, E.: Automatic epicardial fat segmentation and quantification of CT scans using dual U-Nets with a morphological processing layer. IEEE Access 8, 128032–128041 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Baeza, R. et al. (2023). A Generalization Study of Automatic Pericardial Segmentation in Computed Tomography Images. In: Cunha, A., M. Garcia, N., Marx Gómez, J., Pereira, S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-031-32029-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-32029-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32028-6
Online ISBN: 978-3-031-32029-3
eBook Packages: Computer ScienceComputer Science (R0)