iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-32029-3_15
A Generalization Study of Automatic Pericardial Segmentation in Computed Tomography Images | SpringerLink
Skip to main content

A Generalization Study of Automatic Pericardial Segmentation in Computed Tomography Images

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2022)

Abstract

The pericardium is a thin membrane sac that covers the heart. As such, the segmentation of the pericardium in computed tomography (CT) can have several clinical applications, namely as a preprocessing step for extraction of different clinical parameters. However, manual segmentation of the pericardium can be challenging, time-consuming and subject to observer variability, which has motivated the development of automatic pericardial segmentation methods.

In this study, a method to automatically segment the pericardium in CT using a U-Net framework is proposed. Two datasets were used in this study: the publicly available Cardiac Fat dataset and a private dataset acquired at the hospital centre of Vila Nova de Gaia e Espinho (CHVNGE).

The Cardiac Fat database was used for training with two different input sizes - 512 \(\times \) 512 and 256 \(\times \) 256. A superior performance was obtained with the 256 \(\times \) 256 image size, with a mean Dice similarity score (DCS) of 0.871 ± 0.01 and 0.807 ± 0.06 on the Cardiac Fat test set and the CHVNGE dataset, respectively.

Results show that reasonable performance can be achieved with a small number of patients for training and an off-the-shelf framework, with only a small decrease in performance in an external dataset. Nevertheless, additional data will increase the robustness of this approach for difficult cases and future approaches must focus on the integration of 3D information for a more accurate segmentation of the lower pericardium.

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within projects DSAIPA/AI/0083/2020 and LA/P/0063/2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cardiac fat database - computed tomography. http://visual.ic.uff.br/en/cardio/ctfat/index.php. Accessed 20 Feb 2022

  2. Alexopoulos, N., McLean, D.S., Janik, M., Arepalli, C.D., Stillman, A.E., Raggi, P.: Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210(1), 150–154 (2010)

    Article  Google Scholar 

  3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Mathem. Softw. (TOMS) 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Commandeur, F., et al.: Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study. Radiol. Artif. Intell. 1(6), e190045 (2019)

    Article  Google Scholar 

  5. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  6. Hajar, R.: Risk factors for coronary artery disease: historical perspectives. Heart Views Official J. Gulf Heart Assoc. 18(3), 109 (2017)

    Google Scholar 

  7. Li, X., Liu, Y., Wang, Y., Yan, D.: Computing homography with RANSAC algorithm: a novel method of registration. In: Electronic Imaging and Multimedia Technology IV, vol. 5637, pp. 109–112. SPIE (2005)

    Google Scholar 

  8. Militello, C., et al.: A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans. Comput. Biol. Med. 114, 103424 (2019)

    Article  Google Scholar 

  9. Morin, R.L., Gerber, T.C., McCollough, C.H.: Radiation dose in computed tomography of the heart. Circulation 107(6), 917–922 (2003)

    Article  Google Scholar 

  10. Okrainec, K., Banerjee, D.K., Eisenberg, M.J.: Coronary artery disease in the developing world. Am. Heart J. 148(1), 7–15 (2004)

    Article  Google Scholar 

  11. Rodrigues, É.O., Morais, F., Morais, N., Conci, L., Neto, L., Conci, A.: A novel approach for the automated segmentation and volume quantification of cardiac fats on computed tomography. Comput. Methods Programs Biomed. 123, 109–128 (2016)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  14. Talman, A.H., Psaltis, P.J., Cameron, J.D., Meredith, I.T., Seneviratne, S.K., Wong, D.T.: Epicardial adipose tissue: far more than a fat depot. Cardiovas. Diagn. Ther. 4(6), 416 (2014)

    Google Scholar 

  15. Zhang, Q., Zhou, J., Zhang, B., Jia, W., Wu, E.: Automatic epicardial fat segmentation and quantification of CT scans using dual U-Nets with a morphological processing layer. IEEE Access 8, 128032–128041 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rúben Baeza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baeza, R. et al. (2023). A Generalization Study of Automatic Pericardial Segmentation in Computed Tomography Images. In: Cunha, A., M. Garcia, N., Marx Gómez, J., Pereira, S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-031-32029-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32029-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32028-6

  • Online ISBN: 978-3-031-32029-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics