iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-28124-2_16
Confidentially Computing DNA Matching Against Malicious Adversaries | SpringerLink
Skip to main content

Confidentially Computing DNA Matching Against Malicious Adversaries

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2022)

Abstract

DNA is one of the most important information in every living thing. The DNA matching experiment is helpful for the study of paternity testing, species identification, gene mutation, suspect determination, and so on. How to study the DNA matching in the case of privacy protection has become the inevitable problems in the research of information security. The Hamming distance can reflect the similarity degree of two DNA sequences. The smaller the Hamming distance is, the more similar the two DNA sequences are. In this paper, the DNA sequence with \(l\) length is encoded with a 0–1 string with \(3l\) length, and the protocol of confidentially computing Hamming distance is designed, which calculated the matching degree of two DNA under the premise of protecting DNA privacy. In addition, in view of the criminal suspect DNA matching problem, we design a secure computation protocol against malicious adversaries using the zero-knowledge proof and the cut-choose method to prevent or find malicious behaviors, which can resist malicious attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, C., Luo, C., et al.: A greedy deep learning method for medical disease analysis. IEEE Access 6, 20021–20030 (2018)

    Article  Google Scholar 

  2. Gao, Y., Xiang, X., et al.: Human action monitoring for healthcare based on deep learning. IEEE Access 6, 52277–52285 (2018)

    Article  Google Scholar 

  3. Fu, A., Zhang, X., et al.: VFL: a verifiable federated learning with privacy-preserving for big data in industrial IoT, IEEE Trans. Indust. Inform. 18, 3316–3326 (2020)

    Google Scholar 

  4. Xia, F., Hao, R., et al.: Adaptive GTS allocation in IEEE 802.15. 4 for real-time wireless sensor networks. J. Syst. Archit. 59(10), 1231–1242 (2013)

    Google Scholar 

  5. Kumar, P., Kumar, R., et al.: PPSF: a privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 8(3), 2326–2341 (2021)

    Article  Google Scholar 

  6. Cheng, H., Xie, Z., et al.: Multi-step data prediction in wireless sensor networks based on one-dimensional CNN and bidirectional LSTM. IEEE Access 7, 117883–117896 (2019)

    Article  Google Scholar 

  7. Yao, Y., Xiong, N., et al.: Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput. Math. Appl. 65(9), 1318–1325 (2013)

    Article  MathSciNet  Google Scholar 

  8. Zhao, J., Huang, J., et al.: An effective exponential-based trust and reputation evaluation system in wireless sensor networks. IEEE Access 7, 33859–33869 (2019)

    Article  Google Scholar 

  9. Wu, C., Ju, B., et al.: UAV autonomous target search based on deep reinforcement learning in complex disaster scene. IEEE Access 7, 117227–117245 (2019)

    Article  Google Scholar 

  10. Zhang, W., Zhu, S., Tang, J., Xiong, N.: A novel trust management scheme based on Dempster–Shafer evidence theory for malicious nodes detection in wireless sensor networks, J. Supercomput. 74(4), 1779–1801 (2018)

    Google Scholar 

  11. Chen, Y., Zhou, L., et al.: KNN-BLOCK DBSCAN: fast clustering for large-scale data. IEEE Trans. Syst. Man Cybernet. Syst. 51(6), 3939–3953 (2019)

    Article  Google Scholar 

  12. Huang, S., Zeng, Z., Ota, K., et al.: An intelligent collaboration trust interconnections system for mobile information control in ubiquitous 5G networks. IEEE Trans. Netw. Sci. Eng. 8(1), 347–365 (2020)

    Article  MathSciNet  Google Scholar 

  13. Qiu, M., Gai, K., Xiong, Z.: Privacy-preserving wireless communications using bipartite matching in social big data. Futur. Gener. Comput. Syst. 87, 772–781 (2018)

    Article  Google Scholar 

  14. Qiu, H., Qiu, M., Lu, Z.: Selective encryption on ECG data in body sensor network based on supervised machine learning. Inf. Fusion 55, 59–67 (2020)

    Article  Google Scholar 

  15. Qiu, M., Zhang, L., Ming, Z., et al.: Security-aware optimization for ubiquitous computing systems with SEAT graph approach. J. Comput. Syst. Sci. 79(5), 518–529 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, M.Y., Xu, Y., Liu, Z.: Privacy preserving Hamming distance computing problem of DNA sequences. J. Comput. Appl. 39(09), 2636–2640 (2019)

    Google Scholar 

  17. Liu, Z., Seo, H., Kim, H.et al.: Memory-efficient implementation of elliptic curve cryptography for the Internet-of-Things. IEEE Trans. Depend. Secur. Comput. 16(3), 521–529 (2019)

    Google Scholar 

  18. Goldreich, O.: The Fundamental of Crytography: Basic Application. Cambridge University Press, London (2004)

    Google Scholar 

  19. Qiu, M., Xue, C., Shao, Z., et al.: Efficient algorithm of energy minimization for heterogeneous wireless sensor network. In: IEEE EUC, pp. 25–34 (2006)

    Google Scholar 

  20. Qiu, M., Chen, Z., Ming, Z., Qin, X., Niu, J.: Energy-aware data allocation with hybrid memory for mobile cloud systems. IEEE Syst. J. 11(2), 813–822 (2014)

    Article  Google Scholar 

  21. Niu, J., Gao, Y., Qiu, M., Ming, Z.: Selecting proper wireless network interfaces for user experience enhancement with guaranteed probability. J. Parallel Distrib. Comput. 72(12), 1565–1575 (2012)

    Article  Google Scholar 

  22. Gai, K., Qiu, M., Elnagdy, S.: A novel secure big data cyber incident analytics framework for cloud-based cybersecurity insurance. In: IEEE BigDataSecurity (2016)

    Google Scholar 

  23. Qiu, H., Zheng, Q., et al.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22, 4560–4569 (2020)

    Google Scholar 

  24. Qiu, H., Dong, T., Zhang, T., et al.: Adversarial attacks against network intrusion detection in IoT systems. IEEE Internet Things J. 8(13), 10327–10335 (2020)

    Article  Google Scholar 

  25. Li, S., Wang, W., Du, R.: Protocol for millionaires’ problem in malicious models. Sci. Sin. Inform. 51(1), 75 (2021)

    Google Scholar 

  26. Goldwasser, S., Micali, S., et al.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China: Big Data Analysis based on Software Defined Networking Architecture (No. 62177019; F0701); Inner Mongolia Natural Science Foundation (2021MS06006); 2022 Basic Scientific Research Project of Direct Universities of Inner Mongolia (20220101); 2022 Fund Project of Central Government Guiding Local Science and Technology Development (20220175); 2022 "Western Light" Talent Training Program "Western Young Scholars" Project; Inner Mongolia Discipline Inspection and Supervision Big Data Laboratory Open Project Fund (IMDBD202020);Baotou Kundulun District Science and Technology Plan Project (YF2020013); the 14th Five Year Plan of Education and Science of Inner Mongolia (NGJGH2021167); Inner Mongolia Science and Technology Major Project (2019ZD025); 2022 Inner Mongolia Postgraduate Education and Teaching Reform Project (20220213); the 2022 Ministry of Education Central and Western China Young Backbone Teachers and Domestic Visiting Scholars Program (20220393); Basic Scientific Research Business Fee Project of Beijing Municipal Commission of Education (110052972027); Research Startup Fund Project of North China University of Technology (110051360002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tu, X., Liu, X., Hu, X., Li, B., Xiong, N.N. (2023). Confidentially Computing DNA Matching Against Malicious Adversaries. In: Qiu, M., Lu, Z., Zhang, C. (eds) Smart Computing and Communication. SmartCom 2022. Lecture Notes in Computer Science, vol 13828. Springer, Cham. https://doi.org/10.1007/978-3-031-28124-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28124-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28123-5

  • Online ISBN: 978-3-031-28124-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics