iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-23606-8_3
Preconditioners for Batched Iterative Linear Solvers on GPUs | SpringerLink
Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1690))

Included in the following conference series:

  • 623 Accesses

Abstract

Batched iterative solvers can be an attractive alternative to batched direct solvers if the linear systems allow for fast convergence. In non-batched settings, iterative solvers are often enhanced with sophisticated preconditioners to improve convergence. In this paper, we develop preconditioners for batched iterative solvers that improve the iterative solver convergence without incurring detrimental resource overhead and preserving much of the iterative solver flexibility. We detail the design and implementation considerations, present a user-friendly interface to the batched preconditioners, and demonstrate the convergence and runtime benefits over non-preconditioned batched iterative solvers on state-of-the-art GPUs for a variety of benchmark problems from finite difference stencil matrices, the Suitesparse matrix collection and a computational chemistry application.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Ginkgo features also batched versions of other Krylov solvers, BiCGStab is however the most lightweight Krylov solver for general problems available.

  2. 2.

    This work was performed on the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research.

References

  1. Abdelfattah, A., et al.: A set of batched basic linear algebra subprograms and LAPACK routines. ACM Trans. Math. Softw. 47(3), 21:1–21:23 (2021)

    Google Scholar 

  2. Aggarwal, I., Kashi, A., Nayak, P., Balos, C.J., Woodward, C.S., Anzt, H.: Batched sparse iterative solvers for computational chemistry simulations on GPUs. In: 2021 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), pp. 35–43 (2021)

    Google Scholar 

  3. Anzt, H., Collins, G., Dongarra, J., Flegar, G., Quintana-Ortí, E.S.: Flexible batched sparse matrix-vector product on GPUs. In: Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA 2017, pp. 1–8, New York, NY, USA, November 2017. Association for Computing Machinery (2017)

    Google Scholar 

  4. Anzt, H., Dongarra, J., Flegar, G., Quintana-Ortí, E.S.: Batched Gauss-Jordan elimination for Block-Jacobi preconditioner generation on GPUs. In: Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores, PMAM 2017, pp. 1–10, New York, NY, USA, February 2017. Association for Computing Machinery (2017)

    Google Scholar 

  5. Balos, C.J., Gardner, D.J., Woodward, C.S., Reynolds, D.R.: Enabling GPU accelerated computing in the SUNDIALS time integration library. Parallel Comput. 108, 102836 (2021)

    Google Scholar 

  6. Carroll, E., Gloster, A., Bustamante, M.D. and Náraigh, L.Ó.: A batched GPU methodology for numerical solutions of partial differential equations. arXiv, 2107.05395 (2021)

    Google Scholar 

  7. Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. SIAM J. Sci. Comput. 37(2), C169–C193 (2015). Publisher: Society for Industrial and Applied Mathematics

    Google Scholar 

  8. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

    Google Scholar 

  9. Doi, S.: On parallelism and convergence of incomplete LU factorizations. Appl. Numer. Math. 7(5), 417–436 (1991)

    Article  MATH  Google Scholar 

  10. Dong, T., Haidar, A., Luszczek, P., Harris, J.A., Tomov, S., Dongarra, J.: LU factorization of small matrices: accelerating batched DGETRF on the GPU. In: 2014 IEEE International Conference on High Performance Computing and Communications, 2014 IEEE 6th International Symposium on Cyberspace Safety and Security, 2014 IEEE 11th International Conference on Embedded Software and System (HPCC, CSS, ICESS), pp. 157–160, Paris, France, August 2014. IEEE

    Google Scholar 

  11. Dongarra, J., et al.: A proposed API for batched basic linear algebra subprograms, April 2016. https://eprints.ma.man.ac.uk/2464/

  12. Evstigneev, N.M., Ryabkov, O.I., Tsatsorin, E.A.: On the inversion of multiple matrices on GPU in batched mode. Supercomput. Front. Innov. Int. J. 5(2), 23–42 (2018)

    Google Scholar 

  13. Gloster, A., Náraigh, L.Ó, Khang, E.P.: cupentbatch-a batched pentadiagonal solver for NVIDIA GPUs. Comput. Phys. Commun. 241, 113–121 (2019)

    Google Scholar 

  14. Göbel, F., Grützmacher, T., Ribizel, T., Anzt, H.: Mixed precision incomplete and factorized sparse approximate inverse preconditioning on GPUs. In: Sousa, L., Roma, N., Tomás, P. (eds.) Euro-Par 2021. LNCS, vol. 12820, pp. 550–564. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85665-6_34

    Chapter  Google Scholar 

  15. Hager, R., Yoon, E.S., Ku, S., D’Azevedo, E.F., Worley, P.H., Chang, C.S.: A fully non-linear multi-species Fokker-Planck-Landau collision operator for simulation of fusion plasma. J. Comput. Phys. 315, 644–660 (2016)

    Google Scholar 

  16. Kashi, A., Nayak, P., Kulkarni, D., Scheinberg, A., Lin, P., Anzt, H.: Batched sparse iterative solvers on GPU for the collision operator for fusion plasma simulations. In: 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2022)

    Google Scholar 

  17. Liu, W., Li, A., Hogg, J., Duff, I.S., Vinter, B.: A synchronization-free algorithm for parallel sparse triangular solves. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp. 617–630. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43659-3_45

    Chapter  MATH  Google Scholar 

  18. NVIDIA: cuSOLVER–gpu accelerated library for decompositions and linear system solutions on NVIDIA GPUs. https://docs.nvidia.com/cuda/cusolver/index.html. Accessed 24 Aug 2021

  19. Valero-Lara, P., Martínez-Pérez, I., Sirvent, R., Martorell, X., Peña, A.J.: cuThomasBatch and cuThomasVBatch, CUDA routines to compute batch of tridiagonal systems on NVIDIA GPUs. Concurrency Comput. Pract. Exp. 30, e4909 (2018). https://doi.org/10.1002/cpe.4909

  20. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992). Publisher: Society for Industrial and Applied Mathematics

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aggarwal, I., Nayak, P., Kashi, A., Anzt, H. (2022). Preconditioners for Batched Iterative Linear Solvers on GPUs. In: Doug, K., Al, G., Pophale, S., Liu, H., Parete-Koon, S. (eds) Accelerating Science and Engineering Discoveries Through Integrated Research Infrastructure for Experiment, Big Data, Modeling and Simulation. SMC 2022. Communications in Computer and Information Science, vol 1690. Springer, Cham. https://doi.org/10.1007/978-3-031-23606-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23606-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23605-1

  • Online ISBN: 978-3-031-23606-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics