Abstract
The identification of olive-tree cultivars is a lengthy and expensive process, therefore, the proposed work presents a new strategy for identifying different cultivars of olive trees using their leaf and machine learning algorithms. In this initial case, four autochthonous cultivars of the Trás-os-Montes region in Portugal are identified (Cobrançosa, Madural, Negrinha e Verdeal). With the use of this type of algorithm, it is expected to replace the previous techniques, saving time and resources for farmers. Three different machine learning algorithms (Decision Tree, SVM, Random Forest) were also compared and the results show an overall accuracy rate of the best algorithm (Random Forest) of approximately 93%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
International olive oil. https://www.internationaloliveoil.org/olive-world/olive-tree/. Accessed 07 June 2022
The observatory of economic complexity. https://oec.world/en/profile/hs/olive-oil-fractions-refined-not-chemically-modifie. Accessed 10 May 2022
Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6, 33789–33795 (2018)
Aria, M., Cuccurullo, C.: Bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informetr. 11(4), 959–975 (2017)
Bautista, R., Crespillo, R., Cánovas, F.M., Gonzalo Claros, M.: Identification of olive-tree cultivars with scar markers. Euphytica 129(1), 33–41 (2003)
Besnard, G., Baradat, P., Bervillé, A.: Olive cultivar identification using nuclear RAPDs and mitochondrial RFLPs. In: International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture, vol. 546. pp. 317–324 (2000)
Besnard, G., Breton, C., Baradat, P., Khadari, B., Bervillé, A.: Cultivar identification in olive based on RAPD markers. J. Am. Soc. Hortic. Sci. 126(6), 668–675 (2001)
Beyaz, A., Özkaya, M.T., İçen, D.: Identification of some Spanish olive cultivars using image processing techniques. Scientia Horticulturae 225, 286–292 (2017)
Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016). https://doi.org/10.1007/s11749-016-0481-7
Bracci, T., Sebastiani, L., Busconi, M., Fogher, C., Belaj, A., Trujillo, I.: SSR markers reveal the uniqueness of olive cultivars from the Italian region of Liguria. Scientia Horticulturae 122(2), 209–215 (2009)
Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Breton, C., Terral, J.F., Pinatel, C., Médail, F., Bonhomme, F., Bervillé, A.: The origins of the domestication of the olive tree. Comptes Rendus Biologies 332(12), 1059–1064 (2009)
International Olive Oil Council: World catalogue of olive varieties. International Olive Oil Council, 2000, Madrid, Spain (2000)
Ergulen, E., Ozkaya, M., Ulger, S., Ozilbey, N.: Identification of some Turkish olive cultivars by using RAPD-PCR technique. In: IV International Symposium on Olive Growing, vol. 586, pp. 91–95 (2000)
Fabbri, A., Hormaza, J., Polito, V.: Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J. Am. Soc. Hortic. Sci. 120(3), 538–542 (1995)
Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.: Random forests for land cover classification. Pattern Recognit. Lett. 27(4), 294–300 (2006)
Grinblat, G.L., Uzal, L.C., Larese, M.G., Granitto, P.M.: Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric. 127, 418–424 (2016)
Guinda, A., Lanzón, A., Albi, T.: Differences in hydrocarbons of virgin olive oils obtained from several olive varieties. J. Agric. Food Chem. 44(7), 1723–1726 (1996)
Heidary-Sharifabad, A., Zarchi, M.S., Emadi, S., Zarei, G.: An efficient deep learning model for cultivar identification of a pistachio tree. Br. Food J. (2021)
Huang, S., Cai, N., Pacheco, P.P., Narrandes, S., Wang, Y., Xu, W.: Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 15(1), 41–51 (2018)
INE: Instituto nacional de estatística, estatísticas agrícolas de base. https://www.ine.pt/xportal/xmain?xpid=INE &xpgid=ine_base_dados. Accessed 11 May 2022
INE: Instituto nacional de estatística, previsões agrícolas. https://www.ine.pt/xportal/xmain?xpid=INE &xpgid=ine_destaques &DESTAQU ESdest_boui=526211517 &DESTAQUESmodo=2. Accessed 11 May 2022
Jain, A., et al.: Overview and importance of data quality for machine learning tasks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3561–3562 (2020)
Kotsiantis, S.B., Zaharakis, I., Pintelas, P., et al.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160(1), 3–24 (2007)
Larese, M.G., Granitto, P.M.: Hybrid consensus learning for legume species and cultivars classification. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 201–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16220-1_15
Liu, C., Han, J., Chen, B., Mao, J., Xue, Z., Li, S.: A novel identification method for apple (Malus domestica Borkh.) cultivars based on a deep convolutional neural network with leaf image input. Symmetry 12(2), 217 (2020)
Liu, Y., et al.: Development of a mobile application for identification of grapevine (Vitis vinifera L.) cultivars via deep learning. Int. J. Agric. Biol. Eng. 14(5), 172–179 (2021)
Loh, W.Y.: Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)
Martínez, S.S., Gila, D.M., Beyaz, A., Ortega, J.G., García, J.G.: A computer vision approach based on endocarp features for the identification of olive cultivars. Comput. Electron. Agric. 154, 341–346 (2018)
Montaño, A., Sánchez, A., Casado, F., De Castro, A., Rejano, L.: Chemical profile of industrially fermented green olives of different varieties. Food Chem. 82(2), 297–302 (2003)
Nasiri, A., Taheri-Garavand, A., Fanourakis, D., Zhang, Y.D., Nikoloudakis, N.: Automated grapevine cultivar identification via leaf imaging and deep convolutional neural networks: a proof-of-concept study employing primary Iranian varieties. Plants 10(8), 1628 (2021)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
Reale, S., et al.: SNP-based markers for discriminating olive (Olea europaea L.) cultivars. Genome 49(9), 1193–1205 (2006)
Sesli, M., Yegenoğlu, E., Altıntaa, V.: Determination of olive cultivars by deep learning and ISSR markers. J. Environ. Biol. 41(2), 426–431 (2020)
Shahriari, M., Omrani, A., Falahati-Anbaran, M., Ghareyazei, B., Nankali, A.: Identification of Iranian olive cultivars by using RAPD and microsatellite markers. In: V International Symposium on Olive Growing, vol. 791, pp. 109–115 (2004)
Tavakoli, H., Alirezazadeh, P., Hedayatipour, A., Nasib, A.B., Landwehr, N.: Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks. Comput. Electron. Agric. 181, 105935 (2021)
Vanloot, P., Bertrand, D., Pinatel, C., Artaud, J., Dupuy, N.: Artificial vision and chemometrics analyses of olive stones for varietal identification of five French cultivars. Comput. Electron. Agric. 102, 98–105 (2014)
Zhao, Y., Zhang, Y.: Comparison of decision tree methods for finding active objects. Adv. Space Res. 41(12), 1955–1959 (2008)
Acknowledgement
This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF). The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mendes, J. et al. (2022). Machine Learning to Identify Olive-Tree Cultivars. In: Pereira, A.I., Košir, A., Fernandes, F.P., Pacheco, M.F., Teixeira, J.P., Lopes, R.P. (eds) Optimization, Learning Algorithms and Applications. OL2A 2022. Communications in Computer and Information Science, vol 1754. Springer, Cham. https://doi.org/10.1007/978-3-031-23236-7_56
Download citation
DOI: https://doi.org/10.1007/978-3-031-23236-7_56
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23235-0
Online ISBN: 978-3-031-23236-7
eBook Packages: Computer ScienceComputer Science (R0)