iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-23236-7_56
Machine Learning to Identify Olive-Tree Cultivars | SpringerLink
Skip to main content

Machine Learning to Identify Olive-Tree Cultivars

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2022)

Abstract

The identification of olive-tree cultivars is a lengthy and expensive process, therefore, the proposed work presents a new strategy for identifying different cultivars of olive trees using their leaf and machine learning algorithms. In this initial case, four autochthonous cultivars of the Trás-os-Montes region in Portugal are identified (Cobrançosa, Madural, Negrinha e Verdeal). With the use of this type of algorithm, it is expected to replace the previous techniques, saving time and resources for farmers. Three different machine learning algorithms (Decision Tree, SVM, Random Forest) were also compared and the results show an overall accuracy rate of the best algorithm (Random Forest) of approximately 93%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International olive oil. https://www.internationaloliveoil.org/olive-world/olive-tree/. Accessed 07 June 2022

  2. The observatory of economic complexity. https://oec.world/en/profile/hs/olive-oil-fractions-refined-not-chemically-modifie. Accessed 10 May 2022

  3. Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 6, 33789–33795 (2018)

    Article  Google Scholar 

  4. Aria, M., Cuccurullo, C.: Bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informetr. 11(4), 959–975 (2017)

    Article  Google Scholar 

  5. Bautista, R., Crespillo, R., Cánovas, F.M., Gonzalo Claros, M.: Identification of olive-tree cultivars with scar markers. Euphytica 129(1), 33–41 (2003)

    Article  Google Scholar 

  6. Besnard, G., Baradat, P., Bervillé, A.: Olive cultivar identification using nuclear RAPDs and mitochondrial RFLPs. In: International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture, vol. 546. pp. 317–324 (2000)

    Google Scholar 

  7. Besnard, G., Breton, C., Baradat, P., Khadari, B., Bervillé, A.: Cultivar identification in olive based on RAPD markers. J. Am. Soc. Hortic. Sci. 126(6), 668–675 (2001)

    Article  Google Scholar 

  8. Beyaz, A., Özkaya, M.T., İçen, D.: Identification of some Spanish olive cultivars using image processing techniques. Scientia Horticulturae 225, 286–292 (2017)

    Article  Google Scholar 

  9. Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016). https://doi.org/10.1007/s11749-016-0481-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Bracci, T., Sebastiani, L., Busconi, M., Fogher, C., Belaj, A., Trujillo, I.: SSR markers reveal the uniqueness of olive cultivars from the Italian region of Liguria. Scientia Horticulturae 122(2), 209–215 (2009)

    Article  Google Scholar 

  11. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  12. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  13. Breton, C., Terral, J.F., Pinatel, C., Médail, F., Bonhomme, F., Bervillé, A.: The origins of the domestication of the olive tree. Comptes Rendus Biologies 332(12), 1059–1064 (2009)

    Article  Google Scholar 

  14. International Olive Oil Council: World catalogue of olive varieties. International Olive Oil Council, 2000, Madrid, Spain (2000)

    Google Scholar 

  15. Ergulen, E., Ozkaya, M., Ulger, S., Ozilbey, N.: Identification of some Turkish olive cultivars by using RAPD-PCR technique. In: IV International Symposium on Olive Growing, vol. 586, pp. 91–95 (2000)

    Google Scholar 

  16. Fabbri, A., Hormaza, J., Polito, V.: Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J. Am. Soc. Hortic. Sci. 120(3), 538–542 (1995)

    Google Scholar 

  17. Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.: Random forests for land cover classification. Pattern Recognit. Lett. 27(4), 294–300 (2006)

    Article  Google Scholar 

  18. Grinblat, G.L., Uzal, L.C., Larese, M.G., Granitto, P.M.: Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric. 127, 418–424 (2016)

    Article  Google Scholar 

  19. Guinda, A., Lanzón, A., Albi, T.: Differences in hydrocarbons of virgin olive oils obtained from several olive varieties. J. Agric. Food Chem. 44(7), 1723–1726 (1996)

    Article  Google Scholar 

  20. Heidary-Sharifabad, A., Zarchi, M.S., Emadi, S., Zarei, G.: An efficient deep learning model for cultivar identification of a pistachio tree. Br. Food J. (2021)

    Google Scholar 

  21. Huang, S., Cai, N., Pacheco, P.P., Narrandes, S., Wang, Y., Xu, W.: Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics 15(1), 41–51 (2018)

    Google Scholar 

  22. INE: Instituto nacional de estatística, estatísticas agrícolas de base. https://www.ine.pt/xportal/xmain?xpid=INE &xpgid=ine_base_dados. Accessed 11 May 2022

  23. INE: Instituto nacional de estatística, previsões agrícolas. https://www.ine.pt/xportal/xmain?xpid=INE &xpgid=ine_destaques &DESTAQU ESdest_boui=526211517 &DESTAQUESmodo=2. Accessed 11 May 2022

  24. Jain, A., et al.: Overview and importance of data quality for machine learning tasks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3561–3562 (2020)

    Google Scholar 

  25. Kotsiantis, S.B., Zaharakis, I., Pintelas, P., et al.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160(1), 3–24 (2007)

    Google Scholar 

  26. Larese, M.G., Granitto, P.M.: Hybrid consensus learning for legume species and cultivars classification. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 201–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16220-1_15

    Chapter  Google Scholar 

  27. Liu, C., Han, J., Chen, B., Mao, J., Xue, Z., Li, S.: A novel identification method for apple (Malus domestica Borkh.) cultivars based on a deep convolutional neural network with leaf image input. Symmetry 12(2), 217 (2020)

    Google Scholar 

  28. Liu, Y., et al.: Development of a mobile application for identification of grapevine (Vitis vinifera L.) cultivars via deep learning. Int. J. Agric. Biol. Eng. 14(5), 172–179 (2021)

    Google Scholar 

  29. Loh, W.Y.: Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)

    Article  Google Scholar 

  30. Martínez, S.S., Gila, D.M., Beyaz, A., Ortega, J.G., García, J.G.: A computer vision approach based on endocarp features for the identification of olive cultivars. Comput. Electron. Agric. 154, 341–346 (2018)

    Article  Google Scholar 

  31. Montaño, A., Sánchez, A., Casado, F., De Castro, A., Rejano, L.: Chemical profile of industrially fermented green olives of different varieties. Food Chem. 82(2), 297–302 (2003)

    Article  Google Scholar 

  32. Nasiri, A., Taheri-Garavand, A., Fanourakis, D., Zhang, Y.D., Nikoloudakis, N.: Automated grapevine cultivar identification via leaf imaging and deep convolutional neural networks: a proof-of-concept study employing primary Iranian varieties. Plants 10(8), 1628 (2021)

    Article  Google Scholar 

  33. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Article  Google Scholar 

  35. Reale, S., et al.: SNP-based markers for discriminating olive (Olea europaea L.) cultivars. Genome 49(9), 1193–1205 (2006)

    Google Scholar 

  36. Sesli, M., Yegenoğlu, E., Altıntaa, V.: Determination of olive cultivars by deep learning and ISSR markers. J. Environ. Biol. 41(2), 426–431 (2020)

    Article  Google Scholar 

  37. Shahriari, M., Omrani, A., Falahati-Anbaran, M., Ghareyazei, B., Nankali, A.: Identification of Iranian olive cultivars by using RAPD and microsatellite markers. In: V International Symposium on Olive Growing, vol. 791, pp. 109–115 (2004)

    Google Scholar 

  38. Tavakoli, H., Alirezazadeh, P., Hedayatipour, A., Nasib, A.B., Landwehr, N.: Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks. Comput. Electron. Agric. 181, 105935 (2021)

    Article  Google Scholar 

  39. Vanloot, P., Bertrand, D., Pinatel, C., Artaud, J., Dupuy, N.: Artificial vision and chemometrics analyses of olive stones for varietal identification of five French cultivars. Comput. Electron. Agric. 102, 98–105 (2014)

    Article  Google Scholar 

  40. Zhao, Y., Zhang, Y.: Comparison of decision tree methods for finding active objects. Adv. Space Res. 41(12), 1955–1959 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF). The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mendes, J. et al. (2022). Machine Learning to Identify Olive-Tree Cultivars. In: Pereira, A.I., Košir, A., Fernandes, F.P., Pacheco, M.F., Teixeira, J.P., Lopes, R.P. (eds) Optimization, Learning Algorithms and Applications. OL2A 2022. Communications in Computer and Information Science, vol 1754. Springer, Cham. https://doi.org/10.1007/978-3-031-23236-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23236-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23235-0

  • Online ISBN: 978-3-031-23236-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics