Abstract
Melanoma is considered the deadliest type of skin cancer and in the last decade, the incidence rate has increased substantially. However, automatic melanoma classification has been widely used to aid the detection of lesions as well as prevent eventual death. Therefore, in this paper we decided to investigate how an attention mechanism combined with a classical backbone network would affect the classification of melanomas. This mechanism is known as triplet attention, a lightweight method that allows to capture cross-domain interactions. This characteristic helps to acquire rich discriminative feature representations. The different experiments demonstrate the effectiveness of the model in five different datasets. The model was evaluated based on sensitivity, specificity, accuracy, and F1-Score. Even though it is a simple method, this attention mechanism shows that its application could be beneficial in classification tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shahana sherin, K. C, Shayini, R.: Classification of skin lesions in digital images for the diagnosis of skin cancer. In: 2020 International Conference on Smart Electronics and Communication (ICOSEC), pp. 162–166. IEEE, India (2020). https://doi.org/10.1109/ICOSEC49089.2020.9215271
2020 Melanoma Skin Cancer Report: Stemming The Global Epidemic. https://www.melanomauk.org.uk/2020-melanoma-skin-cancer-report. Accessed 20 Jul 2022
Barata, A.C.F.: Automatic detection of melanomas using dermoscopy images. Technical report, Instituto Superior Tecnico Lisboa (2017)
Craythorne, E., Nicholson, P.: Diagnosis and management of skin cancer. Medicine. 51, 2448–2452 (2021). https://doi.org/10.1016/j.mpmed.2021.04.007
Carli, P., et al.: Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology. Br. J. Dermatol. (2003). https://doi.org/10.1046/j.1365-2133.2003.05023.x
Davenport, T., Kalakota, R.: The potential for artificial intelligence in healthcare. Future Hosp. J. 6, 94–98 (2019). https://doi.org/10.7861/futurehosp.6-2-94
Chollet, F.: Xception: deep learning with Depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807. IEEE, USA (2017). https://doi.org/10.1109/CVPR.2017.195
Tan, M., Le,: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (2019). https://doi.org/10.48550/arxiv.1905.11946
Hu, J., Shen, L., Sun, G., Albanie, S.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023. (2020). https://doi.org/10.1109/TPAMI.2019.2913372
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: Convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Wang, F., et al.: Residual Attention Network for Image Classification (2017). https://doi.org/10.1109/CVPR.2017.683
Boonyuen, K., Kaewprapha, P., Weesakul, U., Srivihok, P.: Convolutional neural network inception-v3: a machine learning approach for leveling short-range rainfall forecast model from satellite image. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2019. LNCS, vol. 11656, pp. 105–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26354-6_10
Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent models of visual attention. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, vol. 2, 2204–2212 (2014)
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Dai, J., et al.: Deformable convolutional network. In: IEEE International Conference on Computer Vision (ICCV), pp. 764–773 (2017). https://doi.org/10.1109/ICCV.2017.89
Park, J., Woo, S., Lee, J.-Y., Kweon, I.: Bam: Bottleneck attention module (2018)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018). https://doi.org/10.1109/CVPR.2018.00813
Huang, Z., Wang, X., Wei, Y., Huang, L., Shi, H., Liu, W.: CCNet: CRISS-cross attention for semantic segmentation. In: Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 1. (2020). https://doi.org/10.1109/TPAMI.2020.3007032
Geng, Z., Guo, M-H., Chen, H., Li, X., Wei, K., Lin, Z.: Is Attention Better Than Matrix Decomposition? (2021)
Liang, S., Gu, Y.: Computer-Aided Diagnosis of Alzheimer’s Disease through Weak Supervision Deep Learning Framework with Attention Mechanism (2020). https://doi.org/10.3390/s21010220
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Jin, Q., Meng, Z., Sun, C., Cui, H., Su, R.: RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans. Front. Bioeng. Biotechnol. (2020). https://doi.org/10.3389/fbioe.2020.605132
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Datta, S.K., Shaikh, M.A., Srihari, S.N., Gao, M.: Soft attention improves skin cancer classification performance. In: Reyes, M., et al. (eds.) IMIMIC/TDA4MedicalData -2021. LNCS, vol. 12929, pp. 13–23. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87444-5_2
Yan, Y., Kawahara, J., Hamarneh, G.: Melanoma recognition via visual attention. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 793–804. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_62
Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (2014). arXiv:1409.1556
Misra, D., Nalamada, T., Arasanipalai, A., Hou, Q.: Rotate to attend: convolutional triplet attention module. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 3138–3147 (2020). https://doi.org/10.1109/WACV48630.2021.00318
Rotemberg, V., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data 8, 34 (2021). https://doi.org/10.1038/s41597-021-00815-z
Tschandl P., Rosendahl C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions (2018). https://doi.org/10.1038/sdata.2018.161
Codella, N.C.F., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI). In: International Skin Imaging Collaboration (ISIC) (2017). https://doi.org/10.1109/ISBI.2018.8363547
Combalia, M., et al.: BCN20000: Dermoscopic Lesions in the Wild (2019). arXiv:1908.02288
Mendonça, T., Ferreira, P.M., Marques, J., Marcal, A.R.S., Rozeira, J.: PH\(^2\) - A dermoscopic image database for research and benchmarking. In: 35th International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan (2013)
DermNet NZ. All about the skin. https://dermnetnz.org/image-library. Accessed 26 Jun 2022
Kawahara, J., Daneshvar, S., Argenziano, G., Hamarneh, G.: Seven-point checklist and skin lesion classification using multitask multimodal neural nets. In: IEEE Journal of Biomedical Health Informatics (IEEE JBHI) special issue on Skin Lesion Image Analysis for Melanoma Detection (2019). https://doi.org/10.1109/JBHI.2018.2824327
Kingma, D., Ba, Jimmy.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015) (2015)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520. IEEE, USA (2018). https://doi.org/10.1109/CVPR.2018.00474
Indraswari, R., Rokhana, R., Herulambang, W.: Melanoma image classification based on MobileNetV2 network. Proc. Comput. Sci. 197, 198–207 (2022). https://doi.org/10.1016/j.procs.2021.12.132
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Loureiro, C., Filipe, V., Gonçalves, L. (2022). Attention Mechanism for Classification of Melanomas. In: Pereira, A.I., Košir, A., Fernandes, F.P., Pacheco, M.F., Teixeira, J.P., Lopes, R.P. (eds) Optimization, Learning Algorithms and Applications. OL2A 2022. Communications in Computer and Information Science, vol 1754. Springer, Cham. https://doi.org/10.1007/978-3-031-23236-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-23236-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23235-0
Online ISBN: 978-3-031-23236-7
eBook Packages: Computer ScienceComputer Science (R0)