Abstract
Drones performing an autonomous mission need to adapt to frequent changes in their environment. In other words, they have to be context-aware. Most current context-aware systems are designed to distinguish between situations that have been pre-defined in terms of anticipated situation types and corresponding desired behavior types. This only partially benefits drone technology because many types of drone missions can be characterized by situations that are hard to predict at design time. We suggest combining context-awareness and data analytics for a better situation coverage. This could be achieved by using performance data (generated at real-time) as training data for supervised machine learning – it would allow relating situations to appropriate behaviors that a drone could follow. The conceptual ideas are presented in this position paper while validation is left for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Griffin, G.F.: The use of unmanned aerial vehicles for disaster management. Geomatica 68(4), 265–281 (2014)
Shishkov, B., Branzov, T., Ivanova, K., Verbraeck, A.: Using drones for resilience: a system of systems perspective. In: Proceedings of the 10th International Conference on Telecommunications and Remote Sensing (ICTRS 2021), New York, NY, USA. Association for Computing Machinery (2021)
Shishkov, B., Hristozov, S., Verbraeck, A.: Improving resilience using drones for effective monitoring after disruptive events. In: Proceedings of the 9th International Conference on Telecommunications and Remote Sensing (ICTRS 2020), New York, NY, USA. Association for Computing Machinery (2020)
Shishkov, B., Hristozov, S., Janssen, M., Van Den Hoven, J.: Drones in land border missions: benefits and accountability concerns. In: Proceedings of the 6th International Conference on Telecommunications and Remote Sensing (ICTRS 2017), New York, NY, USA. Association for Computing Machinery (2017)
Milas, A.S., Cracknell, A.P., Warner, T.A.: Drones – the third generation source of remote sensing data. Int. J. Remote Sens. 39(21), 7125–7137 (2018)
Kayan, H., Eslampanah, R., Yeganli, F., Askar, M.: Heat leakage detection and surveillance using aerial thermography drone. In: Proceedings of the 26th Signal Processing and Communications Applications Conference (SIU) (2018)
Pandey, S., Barik, R.K., Gupta, S., Arthi, R.: Pandemic drone with thermal imaging and crowd monitoring system (DRISHYA). In: Tripathy, H.K., Mishra, S., Mallick, P.K., Panda, A.R. (eds.) Technical Advancements of Machine Learning in Healthcare. SCI, vol. 936, pp. 307–325. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4698-7_15
Hill, A.C., Laugier, E.J., Casana, J.: Archaeological remote sensing using multi-temporal, drone-acquired thermal and Near Infrared (NIR) imagery: a case study at the Enfield Shaker Village, New Hampshire. Remote Sens. 12(4), 690 (2020)
Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017, Article ID 3296874 (2017)
Erdelj, M., Natalizio, E., Chowdhury, K.R., Akyildiz, I.F.: Help from the sky: leveraging UAVs for disaster management. IEEE Pervasive Comput. 16(1), 24–32 (2017)
Kopardekar, P., Rios, J., Prevot, Th., Johnson, M., Jung, J., Robinson III, J.E.: Unmanned aircraft system traffic management (UTM) concept of operations. In: Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, D.C., USA (2016)
American Red Cross: Drones for Disaster Response and Relief Operations (2015). https://www.issuelab.org/resources/21683/21683.pdf
Shishkov, B., van Sinderen, M.: Towards well-founded and richer context-awareness conceptual models. In: Shishkov, B. (ed.) BMSD 2021. LNBIP, vol. 422, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79976-2_7
Shishkov, B., van Sinderen, M.: On the context-aware servicing of user needs: extracting and managing context information supported by rules and predictions. In: Shishkov, B. (eds.) BMSD 2022. LNBIP, vol. 453, pp. 240–248. Springer, Cham (2022) https://doi.org/10.1007/978-3-031-11510-3_15
Shishkov, B.: Designing Enterprise Information Systems, Merging Enterprise Modeling and Software Specification. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22441-7
Shishkov, B., Larsen, J.B., Warnier, M., Janssen, M.: Three categories of context-aware systems. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 185–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8_12
Shishkov, B., van Sinderen, M.: From user context states to context-aware applications. In: Filipe, J., Cordeiro, J., Cardoso, J. (eds.) ICEIS 2007. LNBIP, vol. 12, pp. 225–239. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88710-2_18
Shishkov, B.: Tuning the behavior of context-aware applications. In: Shishkov, B. (ed.) BMSD 2019. LNBIP, vol. 356, pp. 134–152. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24854-3_9
Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann Publ. Inc., San Francisco (2011)
Dietz, J.L.G.: Enterprise Ontology, Theory and Methodology. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33149-2
Bunge, M.A.: Treatise on Basic Philosophy. A World of Systems, vol. 4. D. Reidel Publishing Company, Dordrecht (1979)
Shishkov, B., Mendling, J.: Business process variability and public values. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 401–411. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8_31
van Veenstra, A.F., Janssen, M., Tan, Y.H.: Towards an understanding of E-government induced change – drawing on organization and structuration theories. In: Wimmer, M.A., Chappelet, J.L., Janssen, M., Scholl, H.J. (eds.) EGOV 2010. LNCS, vol. 6228, pp. 1–12. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14799-9_1
Bordini, R.H., Fisher, M., Wooldridge, M., Visser, W.: Model checking rational agents. IEEE Intell. Syst. 19(5), 46–52 (2004)
Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16(2), 97–166 (2001)
Silvander, J.: On context frames and their implementations. In: Shishkov, B. (ed.) BMSD 2021. LNBIP, vol. 422, pp. 133–153. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79976-2_8
Dey, A.K., Newberger, A.: Support for context-aware intelligibility and control. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, USA (2009)
Bosems, S., van Sinderen, M.: Models in the design of context-aware well-being applications. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8842, pp. 37–42. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45550-0_6
Alegre, U., Augusto, J.C., Clark, T.: Engineering context-aware systems and applications. J. Syst. Softw. 117(C), 55–83 (2016)
Alférez, G.H., Pelechano, V.: Context-aware autonomous web services in software product lines. Proceedings of the 15th International SPLC Conference, CA, USA. IEEE (2011)
Abeywickrama, D.B., Ramakrishnan, S.: Context-aware services engineering: models, transformations, and verification. ACM Trans. Internet Technol. J. 11(3), Article 10 (2012)
Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: First Workshop on Mobile Computing Systems and Applications, pp. 85–90. IEEE (1994)
Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a context-aware application. Wirel. Netw. 8, 187–197 (2002)
Dey, A.K.: Context-aware computing: the CyberDesk project. In: AAAI Spring Symposium on Intelligent Environments, AAAI Technical Report SS-88-02, pp. 51–54 (1998)
Abecker, A., Bernardi, A., Hinkelmann, K., et al.: Context-aware, proactive delivery of task-specific information: the KnowMore project. Inf. Syst. Front. 2, 253–276 (2000)
van Sinderen, M., van Halteren, A., Wegdam, M., et al.: Supporting context-aware mobile applications: an infrastructure approach. IEEE Commun. Mag. 44(9), 96–104 (2006)
Chaari, T., Laforest, F., Celentano, A.: Adaptation in context-aware pervasive information systems: the SECAS project. Int. J. Pervasive Comput. Commun. 3(4), 400–425 (2007)
Pawar, P., Van Beijnum, B., Hermens, H., Konstantas, D.: Analysis of context-aware network selection schemes for power savings. In: Proceedings of the Asia-Pacific Services Computing Conference, pp. 587–594. IEEE (2008)
Van Engelenburg, S.: Designing context-aware architectures for business-to-government information sharing. Ph.D. thesis. TU Delft Press (2019)
Wegdam, M.: AWARENESS: a project on context AWARE mobile NEtworks and ServiceS. In: Proceedings of the 14th Mobile & Wireless Communications Summit. EURASIP (2005)
Levin, R.I., Rubin, D.S.: Statistics for Management. Prentice Hall, Englewood Cliffs (1997)
Wasserman, T., Wasserman, L.: Motivation, effort, and neural network modeling: implications. In: Wasserman, T., Wasserman, L. (eds.) Motivation, Effort, and the Neural Network Model. NNMAI, pp. 145–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58724-6_12
Hristea, F.T.: The Naïve Bayes Model for Unsupervised Word sense Disambiguation. SpringerBriefs in Statistics. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33693-5
Acknowledgement
This work was partially supported by: (i) Contract “NGIC – National Geoinformation Center for monitoring, assessment and prediction natural and anthropogenic risks and disasters” under the Program “National Roadmap for Scientific Infrastructure 2017–2023”, financed by Bulgarian Ministry of Education and Science; (ii) Faculty of Technology, Policy, and Management – Delft University of Technology; (iii) Faculty of Electrical Engineering, Mathematics and Computer Science – University of Twente.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shishkov, B., Ivanova, K., Verbraeck, A., van Sinderen, M. (2022). Combining Context-Awareness and Data Analytics in Support of Drone Technology. In: Shishkov, B., Lazarov, A. (eds) Telecommunications and Remote Sensing. ICTRS 2022. Communications in Computer and Information Science, vol 1730. Springer, Cham. https://doi.org/10.1007/978-3-031-23226-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-23226-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23225-1
Online ISBN: 978-3-031-23226-8
eBook Packages: Computer ScienceComputer Science (R0)