iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-23226-8_4
Combining Context-Awareness and Data Analytics in Support of Drone Technology | SpringerLink
Skip to main content

Combining Context-Awareness and Data Analytics in Support of Drone Technology

  • Conference paper
  • First Online:
Telecommunications and Remote Sensing (ICTRS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1730))

Included in the following conference series:

Abstract

Drones performing an autonomous mission need to adapt to frequent changes in their environment. In other words, they have to be context-aware. Most current context-aware systems are designed to distinguish between situations that have been pre-defined in terms of anticipated situation types and corresponding desired behavior types. This only partially benefits drone technology because many types of drone missions can be characterized by situations that are hard to predict at design time. We suggest combining context-awareness and data analytics for a better situation coverage. This could be achieved by using performance data (generated at real-time) as training data for supervised machine learning – it would allow relating situations to appropriate behaviors that a drone could follow. The conceptual ideas are presented in this position paper while validation is left for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Griffin, G.F.: The use of unmanned aerial vehicles for disaster management. Geomatica 68(4), 265–281 (2014)

    Article  Google Scholar 

  2. Shishkov, B., Branzov, T., Ivanova, K., Verbraeck, A.: Using drones for resilience: a system of systems perspective. In: Proceedings of the 10th International Conference on Telecommunications and Remote Sensing (ICTRS 2021), New York, NY, USA. Association for Computing Machinery (2021)

    Google Scholar 

  3. Shishkov, B., Hristozov, S., Verbraeck, A.: Improving resilience using drones for effective monitoring after disruptive events. In: Proceedings of the 9th International Conference on Telecommunications and Remote Sensing (ICTRS 2020), New York, NY, USA. Association for Computing Machinery (2020)

    Google Scholar 

  4. Shishkov, B., Hristozov, S., Janssen, M., Van Den Hoven, J.: Drones in land border missions: benefits and accountability concerns. In: Proceedings of the 6th International Conference on Telecommunications and Remote Sensing (ICTRS 2017), New York, NY, USA. Association for Computing Machinery (2017)

    Google Scholar 

  5. Milas, A.S., Cracknell, A.P., Warner, T.A.: Drones – the third generation source of remote sensing data. Int. J. Remote Sens. 39(21), 7125–7137 (2018)

    Article  Google Scholar 

  6. Kayan, H., Eslampanah, R., Yeganli, F., Askar, M.: Heat leakage detection and surveillance using aerial thermography drone. In: Proceedings of the 26th Signal Processing and Communications Applications Conference (SIU) (2018)

    Google Scholar 

  7. Pandey, S., Barik, R.K., Gupta, S., Arthi, R.: Pandemic drone with thermal imaging and crowd monitoring system (DRISHYA). In: Tripathy, H.K., Mishra, S., Mallick, P.K., Panda, A.R. (eds.) Technical Advancements of Machine Learning in Healthcare. SCI, vol. 936, pp. 307–325. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4698-7_15

    Chapter  Google Scholar 

  8. Hill, A.C., Laugier, E.J., Casana, J.: Archaeological remote sensing using multi-temporal, drone-acquired thermal and Near Infrared (NIR) imagery: a case study at the Enfield Shaker Village, New Hampshire. Remote Sens. 12(4), 690 (2020)

    Article  Google Scholar 

  9. Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P.: A review of deep learning methods and applications for unmanned aerial vehicles. J. Sens. 2017, Article ID 3296874 (2017)

    Google Scholar 

  10. Erdelj, M., Natalizio, E., Chowdhury, K.R., Akyildiz, I.F.: Help from the sky: leveraging UAVs for disaster management. IEEE Pervasive Comput. 16(1), 24–32 (2017)

    Article  Google Scholar 

  11. Kopardekar, P., Rios, J., Prevot, Th., Johnson, M., Jung, J., Robinson III, J.E.: Unmanned aircraft system traffic management (UTM) concept of operations. In: Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, D.C., USA (2016)

    Google Scholar 

  12. American Red Cross: Drones for Disaster Response and Relief Operations (2015). https://www.issuelab.org/resources/21683/21683.pdf

  13. Shishkov, B., van Sinderen, M.: Towards well-founded and richer context-awareness conceptual models. In: Shishkov, B. (ed.) BMSD 2021. LNBIP, vol. 422, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79976-2_7

    Chapter  Google Scholar 

  14. Shishkov, B., van Sinderen, M.: On the context-aware servicing of user needs: extracting and managing context information supported by rules and predictions. In: Shishkov, B. (eds.) BMSD 2022. LNBIP, vol. 453, pp. 240–248. Springer, Cham (2022) https://doi.org/10.1007/978-3-031-11510-3_15

  15. Shishkov, B.: Designing Enterprise Information Systems, Merging Enterprise Modeling and Software Specification. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22441-7

  16. Shishkov, B., Larsen, J.B., Warnier, M., Janssen, M.: Three categories of context-aware systems. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 185–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8_12

    Chapter  Google Scholar 

  17. Shishkov, B., van Sinderen, M.: From user context states to context-aware applications. In: Filipe, J., Cordeiro, J., Cardoso, J. (eds.) ICEIS 2007. LNBIP, vol. 12, pp. 225–239. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88710-2_18

    Chapter  Google Scholar 

  18. Shishkov, B.: Tuning the behavior of context-aware applications. In: Shishkov, B. (ed.) BMSD 2019. LNBIP, vol. 356, pp. 134–152. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24854-3_9

    Chapter  Google Scholar 

  19. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann Publ. Inc., San Francisco (2011)

    MATH  Google Scholar 

  20. Dietz, J.L.G.: Enterprise Ontology, Theory and Methodology. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33149-2

    Book  Google Scholar 

  21. Bunge, M.A.: Treatise on Basic Philosophy. A World of Systems, vol. 4. D. Reidel Publishing Company, Dordrecht (1979)

    Google Scholar 

  22. Shishkov, B., Mendling, J.: Business process variability and public values. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 401–411. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8_31

    Chapter  Google Scholar 

  23. van Veenstra, A.F., Janssen, M., Tan, Y.H.: Towards an understanding of E-government induced change – drawing on organization and structuration theories. In: Wimmer, M.A., Chappelet, J.L., Janssen, M., Scholl, H.J. (eds.) EGOV 2010. LNCS, vol. 6228, pp. 1–12. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14799-9_1

    Chapter  Google Scholar 

  24. Bordini, R.H., Fisher, M., Wooldridge, M., Visser, W.: Model checking rational agents. IEEE Intell. Syst. 19(5), 46–52 (2004)

    Article  Google Scholar 

  25. Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16(2), 97–166 (2001)

    Article  Google Scholar 

  26. Silvander, J.: On context frames and their implementations. In: Shishkov, B. (ed.) BMSD 2021. LNBIP, vol. 422, pp. 133–153. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79976-2_8

    Chapter  Google Scholar 

  27. Dey, A.K., Newberger, A.: Support for context-aware intelligibility and control. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, USA (2009)

    Google Scholar 

  28. Bosems, S., van Sinderen, M.: Models in the design of context-aware well-being applications. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8842, pp. 37–42. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45550-0_6

    Chapter  Google Scholar 

  29. Alegre, U., Augusto, J.C., Clark, T.: Engineering context-aware systems and applications. J. Syst. Softw. 117(C), 55–83 (2016)

    Article  Google Scholar 

  30. Alférez, G.H., Pelechano, V.: Context-aware autonomous web services in software product lines. Proceedings of the 15th International SPLC Conference, CA, USA. IEEE (2011)

    Google Scholar 

  31. Abeywickrama, D.B., Ramakrishnan, S.: Context-aware services engineering: models, transformations, and verification. ACM Trans. Internet Technol. J. 11(3), Article 10 (2012)

    Google Scholar 

  32. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: First Workshop on Mobile Computing Systems and Applications, pp. 85–90. IEEE (1994)

    Google Scholar 

  33. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a context-aware application. Wirel. Netw. 8, 187–197 (2002)

    Article  MATH  Google Scholar 

  34. Dey, A.K.: Context-aware computing: the CyberDesk project. In: AAAI Spring Symposium on Intelligent Environments, AAAI Technical Report SS-88-02, pp. 51–54 (1998)

    Google Scholar 

  35. Abecker, A., Bernardi, A., Hinkelmann, K., et al.: Context-aware, proactive delivery of task-specific information: the KnowMore project. Inf. Syst. Front. 2, 253–276 (2000)

    Article  Google Scholar 

  36. van Sinderen, M., van Halteren, A., Wegdam, M., et al.: Supporting context-aware mobile applications: an infrastructure approach. IEEE Commun. Mag. 44(9), 96–104 (2006)

    Article  Google Scholar 

  37. Chaari, T., Laforest, F., Celentano, A.: Adaptation in context-aware pervasive information systems: the SECAS project. Int. J. Pervasive Comput. Commun. 3(4), 400–425 (2007)

    Article  Google Scholar 

  38. Pawar, P., Van Beijnum, B., Hermens, H., Konstantas, D.: Analysis of context-aware network selection schemes for power savings. In: Proceedings of the Asia-Pacific Services Computing Conference, pp. 587–594. IEEE (2008)

    Google Scholar 

  39. Van Engelenburg, S.: Designing context-aware architectures for business-to-government information sharing. Ph.D. thesis. TU Delft Press (2019)

    Google Scholar 

  40. Wegdam, M.: AWARENESS: a project on context AWARE mobile NEtworks and ServiceS. In: Proceedings of the 14th Mobile & Wireless Communications Summit. EURASIP (2005)

    Google Scholar 

  41. Levin, R.I., Rubin, D.S.: Statistics for Management. Prentice Hall, Englewood Cliffs (1997)

    Google Scholar 

  42. Wasserman, T., Wasserman, L.: Motivation, effort, and neural network modeling: implications. In: Wasserman, T., Wasserman, L. (eds.) Motivation, Effort, and the Neural Network Model. NNMAI, pp. 145–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58724-6_12

    Chapter  Google Scholar 

  43. Hristea, F.T.: The Naïve Bayes Model for Unsupervised Word sense Disambiguation. SpringerBriefs in Statistics. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33693-5

Download references

Acknowledgement

This work was partially supported by: (i) Contract “NGIC – National Geoinformation Center for monitoring, assessment and prediction natural and anthropogenic risks and disasters” under the Program “National Roadmap for Scientific Infrastructure 2017–2023”, financed by Bulgarian Ministry of Education and Science; (ii) Faculty of Technology, Policy, and Management – Delft University of Technology; (iii) Faculty of Electrical Engineering, Mathematics and Computer Science – University of Twente.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Shishkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shishkov, B., Ivanova, K., Verbraeck, A., van Sinderen, M. (2022). Combining Context-Awareness and Data Analytics in Support of Drone Technology. In: Shishkov, B., Lazarov, A. (eds) Telecommunications and Remote Sensing. ICTRS 2022. Communications in Computer and Information Science, vol 1730. Springer, Cham. https://doi.org/10.1007/978-3-031-23226-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23226-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23225-1

  • Online ISBN: 978-3-031-23226-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics