iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-21867-5_7
QPU-System Co-design for Quantum HPC Accelerators | SpringerLink
Skip to main content

QPU-System Co-design for Quantum HPC Accelerators

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2022)

Abstract

The use of quantum processing units (QPUs) promises speed-ups for solving computational problems, but the quantum devices currently available possess only a very limited number of qubits and suffer from considerable imperfections. One possibility to progress towards practical utility is to use a co-design approach: Problem formulation and algorithm, but also the physical QPU properties are tailored to the specific application. Since QPUs will likely be used as accelerators for classical computers, details of systemic integration into existing architectures are another lever to influence and improve the practical utility of QPUs.

In this work, we investigate the influence of different parameters on the runtime of quantum programs on tailored hybrid CPU-QPU-systems. We study the influence of communication times between CPU and QPU, how adapting QPU designs influences quantum and overall execution performance, and how these factors interact. Using a simple model that allows for estimating which design choices should be subjected to optimisation for a given task, we provide an intuition to the HPC community on potentials and limitations of co-design approaches. We also discuss physical limitations for implementing the proposed changes on real quantum hardware devices.

All authors acknowledge funding from the German Federal Ministry of Education and Research within the funding program quantum technologies—from basic research to market, contract number 13N16093.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The given communication times are rough estimates supposed to illustrate optimisation potentials and relative parameter influence. We obtained the numbers by measuring typical ping durations in cloud and local network scenarios, and estimate QPU-CPU communication time by the round-trip time of an inter-processor-interrupt in a RiscV-system, given the assumptions that a QPU-CPU SoC design will likely be based on modifiable classical architectures, and that communication times between QPU and CPU are similar to inter-core communication times.

    Owing to the restricted space, we do not provide more fine-grained and realistic estimates of and models for these quantities, but remark that they would very likely not substantially change our findings and conclusions.

  2. 2.

    Moving from locally connected components to on-chip integration might be beneficial for latency-critical embedded systems with quantum acceleration, but is likely not overly relevant for many HPC use-cases.

  3. 3.

    SoC denotes a system-on-chip solution, where CPU and QPU are integrated on the chip level.

  4. 4.

    The placement of new connection favours augmenting regions with existing high connectivity density, following the assumption that adding extra connections is easier for regions that are already well connected. Given the lack of space, we refer readers to the replication package for the exact details.

  5. 5.

    Technically, we employ a robust quantile regression approach [32] because the stochastic circuit generation process produces pronounced outliers.

References

  1. Preskill, J.: Quantum computing in the NISQ era and beyond, Quantum, 2, 79 (2018). https://doi.org/10.48550/arXiv.1801.00862

  2. Quantum technology and application consortium-QUTAC: industry quantum computing applications. EPJ Quant. Technol. 8(1), 25 (2021)

    Google Scholar 

  3. Krüger, T., Mauerer, W.: Quantum annealing-based software components: an experimental case study with SAT solving, pp. 445–450 (2020). https://doi.org/10.1145/3387940.3391472

  4. Mauerer, W., Scherzinger, S.: 1-2-3 reproducibility for quantum software experiments. In: Q-SANER@IEEE International Conference on Software Analysis, Evolution and Reengineering (2022)

    Google Scholar 

  5. Deutsch, D.E.: Quantum computational networks. Proc. R. Soc. A 425, 73–90 (1989). https://doi.org/10.1098/rspa.1989.0099

    Article  MathSciNet  MATH  Google Scholar 

  6. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457

    Article  Google Scholar 

  7. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Nat. Phys. 68, 022312 (2003). https://doi.org/10.1103/PhysRevA.68.022312

    Article  Google Scholar 

  8. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001). https://doi.org/10.1126%2Fscience.1057726

  9. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv:1411.4028 (2014). https://doi.org/10.48550/arXiv.1411.4028

  10. Huang, H.-L., Wu, D., Fan, D., Zhu, X.: Superconducting quantum computing: a review," arXiv:2006.10433 (2020). https://doi.org/10.48550/arxiv.2006.10433

  11. Kjaergaard, M., et al.: Superconducting qubits: current state of play. Ann. Rev. Condens. Matter Phys. 11, 369–395 (2020). https://doi.org/10.1146%2Fannurev-conmatphys-031119-050605

  12. Lucas, A.: Ising formulations of many NP problems, vol. 2 (2014). https://doi.org/10.48550/arXiv.1302.5843

  13. Bharti, K., et al.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022). https://doi.org/10.1103/RevModPhys.94.015004

  14. Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm. arXiv:1602.07674 (2016)

  15. C.W. Commander, Maximum cut problem, MAX-CUT Maximum Cut Problem, MAX-CUT. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization. Springer, Boston, pp. 1991–1999 (2009). https://doi.org/10.1007/978-0-387-74759-0_358

  16. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995). https://doi.org/10.1145/227683.227684

    Article  MathSciNet  MATH  Google Scholar 

  17. Fuchs, F.G., Kolden, H.Ø., Aase, N.H., Sartor, G.: Efficient encoding of the weighted MAX \(k\)-CUT on a quantum computer using QAOA. SN Comput. Sci. 2(2), 1–14 (2021). https://doi.org/10.1007/s42979-020-00437-z

    Article  Google Scholar 

  18. Wurtz, J., Lykov, D.: Fixed-angle conjectures for the quantum approximate optimization algorithm on regular maxcut graphs. Phys. Rev. A, 104, 052419 (2021). https://doi.org/10.1103/PhysRevA.104.052419

  19. Marwaha, K.: Local classical MAX-CUT algorithm outperforms \(p=2\) QAOA on high-girth regular graphs. Quantum, 5, 437 (2021). https://doi.org/10.22331/q-2021-04-20-437

  20. Wurtz, J., Love, P.: Maxcut quantum approximate optimization algorithm performance guarantees for \(p>1\). Phys. Rev. A, 103, 042612 (2021). https://doi.org/10.1103/PhysRevA.103.042612

  21. Harrison, S., Sigurdsson, H., Alyatkin, S., Töpfer, J., Lagoudakis, P.: Solving the max-3-cut problem with coherent networks. Phys. Rev. Appl. 17, 024063 (2022). https://doi.org/10.1103/PhysRevApplied.17.024063

  22. Willsch, M., Willsch, D., Jin, F., De Raedt, H., Michielsen, K.: Benchmarking the quantum approximate optimization algorithm. Quantum Inf. Process. 19(7), 1–24 (2020). https://doi.org/10.1007/s11128-020-02692-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Xue, C., Chen, Z.-Y., Wu, Y.-C., Guo, G.-P.: Effects of quantum noise on quantum approximate optimization algorithm. Chinese Phys. Lett. 38(3) (2021). https://doi.org/10.1088/0256-307x/38/3/030302

  24. Pan, Y., Tong, Y., Yang, Y.: Automatic depth optimization for a quantum approximate ptimization algorithm. Phys. Rev. A, 105, 032433 (2022). https://doi.org/10.1103/PhysRevA.105.032433

  25. Akshay, V., Rabinovich, D., Campos, E., Biamonte, J.: Parameter concentrations in quantum approximate optimization. Phys. Rev. A, 104, L010401 (2021). https://doi.org/10.1103/PhysRevA.104.L010401

  26. Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X, 10, 021067 (2020). https://link.aps.org/doi/10.1103/PhysRevX.10.021067

  27. Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E., Venturelli, D., Biswas, R.: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms, 12(2), 34 (2019). https://doi.org/10.3390%2Fa12020034

  28. LaRose, R. Rieffel, E., Venturelli, D.: Mixer-phaser ansätze for quantum optimization with hard constraints. Quantum Mach. Intell. 4(2), 17 (2022). https://doi.org/10.1007/s42484-022-00069-x

  29. Schönberger, M., Franz, M., Scherzinger, S., Mauerer, W.: Peel \(\mid \) Pile? Cross-framework portability of quantum software. In: 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C), pp. 164–169 (2022)

    Google Scholar 

  30. Franz, M., et al.: Uncovering instabilities in variational-quantum deep q-networks. J. Franklin Inst. (2022). https://doi.org/10.1016/j.jfranklin.2022.08.021

  31. Bruzewicz, C.D., Chiaverini, J., McConnell, R., Sage, J.M.: Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6, 021314 (2019). https://doi.org/10.1063%2F1.5088164

  32. Koenker, R.: quantreg: quantile regression, 2022, r package version 5.88 (2022). https://doi.org/10.1201/9781315120256

Download references

Acknowledgement

We thank Manuel Schönberger for providing his topology adaptation simulation code as starting point for our efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Wintersperger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wintersperger, K., Safi, H., Mauerer, W. (2022). QPU-System Co-design for Quantum HPC Accelerators. In: Schulz, M., Trinitis, C., Papadopoulou, N., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2022. Lecture Notes in Computer Science, vol 13642. Springer, Cham. https://doi.org/10.1007/978-3-031-21867-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21867-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21866-8

  • Online ISBN: 978-3-031-21867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics