Abstract
Analogical reasoning methods have been built over various resources, including commonsense knowledge bases, lexical resources, language models, or their combination. While the wide coverage of knowledge about entities and events make Wikidata a promising resource for analogical reasoning across situations and domains, Wikidata has not been employed for this task yet. In this paper, we investigate whether the knowledge in Wikidata supports analogical reasoning. Specifically, we study whether relational knowledge is modeled consistently in Wikidata, observing that relevant relational information is typically missing or modeled in an inconsistent way. Our further experiments show that Wikidata can be used to create data for analogy classification, but this requires much manual effort. To facilitate future work that can support analogies, we discuss key desiderata, and devise a set of metrics to guide an automatic method for extracting analogies from Wikidata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
http://videolectures.net/iswc2017_taylor_applied_semantics/, accessed October 2, 2022.
- 2.
- 3.
- 4.
- 5.
- 6.
References
Balaraman, V., Razniewski, S., Nutt, W.: Recoin: relative completeness in Wikidata. In: Companion Proceedings of the Web Conference 2018, WWW 2018, Republic and Canton of Geneva, CHE, pp. 1787–1792. International World Wide Web Conferences Steering Committee (2018). https://doi.org/10.1145/3184558.3191641
Chen, H., Cao, G., Chen, J., Ding, J.: A practical framework for evaluating the quality of knowledge graph. In: Zhu, X., Qin, B., Zhu, X., Liu, M., Qian, L. (eds.) CCKS 2019. CCIS, vol. 1134, pp. 111–122. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1956-7_10
Chen, K., Rabkina, I., McLure, M.D., Forbus, K.D.: Human-like sketch object recognition via analogical learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1336–1343 (2019)
Das, R., et al.: Knowledge base question answering by case-based reasoning over subgraphs. arXiv preprint arXiv:2202.10610 (2022)
Dehghani, M., Tomai, E., Forbus, K.D., Klenk, M.: An integrated reasoning approach to moral decision-making. In: AAAI, pp. 1280–1286 (2008)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018)
Ferradji, M.A., Benchikha, F.: Enhanced metrics for temporal dimensions toward assessing Linked Data: a case study of Wikidata. J. King Saud Univ. Comput. Inf. Sci. 34, 4983-4992 (2021)
Forbus, K.D., Ferguson, R.W., Lovett, A.M., Gentner, D.: Extending SME to handle large-scale cognitive modeling. Cogn. Sci. 41(5), 1152–1201 (2017)
Forbus, K.D., Hinrichs, T.R.: Analogy and qualitative representations in the companion cognitive architecture (2017)
Gentner, D., Brem, S., Ferguson, R., Wolff, P.: Analogy and creativity in the works of Johannes Kepler (1997)
Girju, R., Moldovan, D., Tatu, M., Antohe, D.: On the semantics of noun compounds. Comput. Speech Lang. 19(4), 479–496 (2005)
Holyoak, K.J., Thagard, P., Sutherland, S.: Mental leaps: analogy in creative thought. Nature 373(6515), 572 (1995)
Hope, T., Chan, J., Kittur, A., Shahaf, D.: Accelerating innovation through analogy mining. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 235–243 (2017)
Ilievski, F., Szekely, P., Schwabe, D.: Commonsense knowledge in Wikidata. arXiv preprint arXiv:2008.08114 (2020)
Klein, N., Ilievski, F., Szekely, P.: Generating explainable abstractions for wikidata entities. In: Proceedings of the 11th on Knowledge Capture Conference, pp. 89–96 (2021)
Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751 (2013)
Möller, C., Lehmann, J., Usbeck, R.: Survey on English entity linking on Wikidata. arXiv preprint arXiv:2112.01989 (2021)
Nagarajah, T., Ilievski, F., Pujara, J.: Understanding narratives through dimensions of analogy. In: Workshop on Qualitative Reasoning (QR) (2022)
Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: Lessons and challenges: Five diverse technology companies show how it’s done. Queue 17(2), 48–75 (2019)
Oguz, B., et al.: UniK-QA: unified representations of structured and unstructured knowledge for open-domain question answering. arXiv preprint arXiv:2012.14610 (2020)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods In Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Piscopo, A., Simperl, E.: What we talk about when we talk about Wikidata quality: a literature survey. In: Proceedings of the 15th International Symposium on Open Collaboration, pp. 1–11 (2019)
Shenoy, K., Ilievski, F., Garijo, D., Schwabe, D., Szekely, P.: A study of the quality of Wikidata. J. Web Semant. (Community Based Knowl. Bases) 72, 100679 (2022)
Ushio, A., Espinosa Anke, L., Schockaert, S., Camacho-Collados, J.: BERT is to NLP what AlexNet is to CV: can pre-trained language models identify analogies? In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3609–3624. Association for Computational Linguistics, August 2021. https://doi.org/10.18653/v1/2021.acl-long.280. https://aclanthology.org/2021.acl-long.280
Wijesiriwardene, T., Wickramarachchi, R., Shalin, V.L., Sheth, A.P.: Towards efficient scoring of student-generated long-form analogies in stem (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ilievski, F., Pujara, J., Shenoy, K. (2022). Does Wikidata Support Analogical Reasoning?. In: Villazón-Terrazas, B., Ortiz-Rodriguez, F., Tiwari, S., Sicilia, MA., MartÃn-Moncunill, D. (eds) Knowledge Graphs and Semantic Web . KGSWC 2022. Communications in Computer and Information Science, vol 1686. Springer, Cham. https://doi.org/10.1007/978-3-031-21422-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-21422-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21421-9
Online ISBN: 978-3-031-21422-6
eBook Packages: Computer ScienceComputer Science (R0)