iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-21422-6_13
Does Wikidata Support Analogical Reasoning? | SpringerLink
Skip to main content

Does Wikidata Support Analogical Reasoning?

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1686))

Included in the following conference series:

Abstract

Analogical reasoning methods have been built over various resources, including commonsense knowledge bases, lexical resources, language models, or their combination. While the wide coverage of knowledge about entities and events make Wikidata a promising resource for analogical reasoning across situations and domains, Wikidata has not been employed for this task yet. In this paper, we investigate whether the knowledge in Wikidata supports analogical reasoning. Specifically, we study whether relational knowledge is modeled consistently in Wikidata, observing that relevant relational information is typically missing or modeled in an inconsistent way. Our further experiments show that Wikidata can be used to create data for analogy classification, but this requires much manual effort. To facilitate future work that can support analogies, we discuss key desiderata, and devise a set of metrics to guide an automatic method for extracting analogies from Wikidata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://videolectures.net/iswc2017_taylor_applied_semantics/, accessed October 2, 2022.

  2. 2.

    https://www.wikidata.org/wiki/Wikidata:Notability.

  3. 3.

    https://www.wikidata.org/wiki/Wikidata:ORES.

  4. 4.

    https://www.wikidata.org/wiki/Wikidata:Primary_sources_tool#References.

  5. 5.

    https://drive.google.com/file/d/1jJz4yAyBKjq4Mm47eMKD12w-DH5uugnN.

  6. 6.

    https://github.com/usc-isi-i2/analogical-transfer-learning/blob/main/Analogical%20Proj%20Experiments.ipynb.

References

  1. Balaraman, V., Razniewski, S., Nutt, W.: Recoin: relative completeness in Wikidata. In: Companion Proceedings of the Web Conference 2018, WWW 2018, Republic and Canton of Geneva, CHE, pp. 1787–1792. International World Wide Web Conferences Steering Committee (2018). https://doi.org/10.1145/3184558.3191641

  2. Chen, H., Cao, G., Chen, J., Ding, J.: A practical framework for evaluating the quality of knowledge graph. In: Zhu, X., Qin, B., Zhu, X., Liu, M., Qian, L. (eds.) CCKS 2019. CCIS, vol. 1134, pp. 111–122. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1956-7_10

    Chapter  Google Scholar 

  3. Chen, K., Rabkina, I., McLure, M.D., Forbus, K.D.: Human-like sketch object recognition via analogical learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1336–1343 (2019)

    Google Scholar 

  4. Das, R., et al.: Knowledge base question answering by case-based reasoning over subgraphs. arXiv preprint arXiv:2202.10610 (2022)

  5. Dehghani, M., Tomai, E., Forbus, K.D., Klenk, M.: An integrated reasoning approach to moral decision-making. In: AAAI, pp. 1280–1286 (2008)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018)

    Article  Google Scholar 

  8. Ferradji, M.A., Benchikha, F.: Enhanced metrics for temporal dimensions toward assessing Linked Data: a case study of Wikidata. J. King Saud Univ. Comput. Inf. Sci. 34, 4983-4992 (2021)

    Google Scholar 

  9. Forbus, K.D., Ferguson, R.W., Lovett, A.M., Gentner, D.: Extending SME to handle large-scale cognitive modeling. Cogn. Sci. 41(5), 1152–1201 (2017)

    Article  Google Scholar 

  10. Forbus, K.D., Hinrichs, T.R.: Analogy and qualitative representations in the companion cognitive architecture (2017)

    Google Scholar 

  11. Gentner, D., Brem, S., Ferguson, R., Wolff, P.: Analogy and creativity in the works of Johannes Kepler (1997)

    Google Scholar 

  12. Girju, R., Moldovan, D., Tatu, M., Antohe, D.: On the semantics of noun compounds. Comput. Speech Lang. 19(4), 479–496 (2005)

    Article  Google Scholar 

  13. Holyoak, K.J., Thagard, P., Sutherland, S.: Mental leaps: analogy in creative thought. Nature 373(6515), 572 (1995)

    Google Scholar 

  14. Hope, T., Chan, J., Kittur, A., Shahaf, D.: Accelerating innovation through analogy mining. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 235–243 (2017)

    Google Scholar 

  15. Ilievski, F., Szekely, P., Schwabe, D.: Commonsense knowledge in Wikidata. arXiv preprint arXiv:2008.08114 (2020)

  16. Klein, N., Ilievski, F., Szekely, P.: Generating explainable abstractions for wikidata entities. In: Proceedings of the 11th on Knowledge Capture Conference, pp. 89–96 (2021)

    Google Scholar 

  17. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  19. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751 (2013)

    Google Scholar 

  20. Möller, C., Lehmann, J., Usbeck, R.: Survey on English entity linking on Wikidata. arXiv preprint arXiv:2112.01989 (2021)

  21. Nagarajah, T., Ilievski, F., Pujara, J.: Understanding narratives through dimensions of analogy. In: Workshop on Qualitative Reasoning (QR) (2022)

    Google Scholar 

  22. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: Lessons and challenges: Five diverse technology companies show how it’s done. Queue 17(2), 48–75 (2019)

    Article  Google Scholar 

  23. Oguz, B., et al.: UniK-QA: unified representations of structured and unstructured knowledge for open-domain question answering. arXiv preprint arXiv:2012.14610 (2020)

  24. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods In Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  25. Piscopo, A., Simperl, E.: What we talk about when we talk about Wikidata quality: a literature survey. In: Proceedings of the 15th International Symposium on Open Collaboration, pp. 1–11 (2019)

    Google Scholar 

  26. Shenoy, K., Ilievski, F., Garijo, D., Schwabe, D., Szekely, P.: A study of the quality of Wikidata. J. Web Semant. (Community Based Knowl. Bases) 72, 100679 (2022)

    Google Scholar 

  27. Ushio, A., Espinosa Anke, L., Schockaert, S., Camacho-Collados, J.: BERT is to NLP what AlexNet is to CV: can pre-trained language models identify analogies? In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3609–3624. Association for Computational Linguistics, August 2021. https://doi.org/10.18653/v1/2021.acl-long.280. https://aclanthology.org/2021.acl-long.280

  28. Wijesiriwardene, T., Wickramarachchi, R., Shalin, V.L., Sheth, A.P.: Towards efficient scoring of student-generated long-form analogies in stem (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Ilievski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ilievski, F., Pujara, J., Shenoy, K. (2022). Does Wikidata Support Analogical Reasoning?. In: Villazón-Terrazas, B., Ortiz-Rodriguez, F., Tiwari, S., Sicilia, MA., Martín-Moncunill, D. (eds) Knowledge Graphs and Semantic Web . KGSWC 2022. Communications in Computer and Information Science, vol 1686. Springer, Cham. https://doi.org/10.1007/978-3-031-21422-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21422-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21421-9

  • Online ISBN: 978-3-031-21422-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics