iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-21422-6_12
DKMI: Diversification of Web Image Search Using Knowledge Centric Machine Intelligence | SpringerLink
Skip to main content

DKMI: Diversification of Web Image Search Using Knowledge Centric Machine Intelligence

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1686))

Included in the following conference series:

Abstract

Web Image Recommendation is quite important in the present-day owing to the large scale of the multimedia content on the World Wide Web (WWW) specifically images. Recommendation of the images that are highly pertinent to the query with diversified yet relevant query results is a challenge. In this paper the DKMI framework for web image recommendation has been proposed which is mainly focused on ontology alignment and knowledge pool derivation using standard crowd-sourced knowledge stores like Wikipedia and DBpedia. Apart from this the DKMI model encompasses differential classification of the same dataset using the GRU and SVM, which are two distinct differential classifiers at two different levels. GRU being a Deep Learning classifier and the SVM being a Machine Learning classifier, enhances the heterogeneity and diversity in the results. Semantic similarity computation using Cosine Similarity, PMI and SOC-PMI at several phases ensures strong relevance computation in the model. The DKMI model yields overall Precision of 97.62% with an accuracy of 98.36% along with the lowest FDR score of 0.03 and is much better than the other models that are considered to be the baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Otani, M., Nakashima, Y., Rahtu, E., Heikkilä, J., Yokoya, N.: Learning joint representations of videos and sentences with web image search. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 651–667. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_46

    Chapter  Google Scholar 

  2. Xie, X., et al.: Improving web image search with contextual information. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1683–1692 (2019)

    Google Scholar 

  3. Guo, D., Gao, P.: Complex-query web image search with concept-based relevance estimation. World Wide Web 19(2), 247–264 (2016)

    Article  Google Scholar 

  4. Sejal, D., Rashmi, V., Venugopal, K.R., Iyengar, S.S., Patnaik, L.M.: Image recommendation based on keyword relevance using absorbing markov chain and image features. Int. J. Multimedia Inf. Retr. 5(3), 185–199 (2016)

    Article  Google Scholar 

  5. Deepak, G., Ahmed, A., Skanda, B.: An intelligent inventive system for personalised webpage recommendation based on ontology semantics. Int. J. Intell. Syst. Technol. Appl. 18(1–2), 115–132 (2019)

    Google Scholar 

  6. Nguyen, H.T.H., Wistuba, M., Schmidt-Thieme, L.: Personalized tag recommendation for images using deep transfer learning. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 705–720. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_43

    Chapter  Google Scholar 

  7. Mishra, R., Kumar, P., Bhasker, B.: A web recommendation system considering sequential information. Decis. Support Syst. 75, 1–10 (2015)

    Article  Google Scholar 

  8. Rawat, Y.S., Kankanhalli, M.S.: ConTagNet: exploiting user context for image tag recommendation. In Proceedings of the 24th ACM international conference on Multimedia, pp. 1102–1106 (2016)

    Google Scholar 

  9. Chen, Z., Wenyin, L., Zhang, F., Li, M., Zhang, H.: Web mining for web image retrieval. J. Am. Soc. Inf. Sci. Technol. 52(10), 831–839 (2001)

    Article  Google Scholar 

  10. Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., Cheng, X.: Text matching as image recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  11. Zhang, W., Wang, Z., Chen, T.: Personalized image recommendation with photo importance and user-item interactive attention. In 2019 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 501–506. IEEE (2019)

    Google Scholar 

  12. Jere, R., Pandey, A., Shaikh, H., Nadgeri, S., Chandankhede, P.: Using machine learning for image recommendation in news articles. In: Shetty D., P., Shetty, S. (eds.) Recent Advances in Artificial Intelligence and Data Engineering. AISC, vol. 1386, pp. 215–225. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3342-3_18

    Chapter  Google Scholar 

  13. Haijiao, X., Huang, C., Wang, D.: Enhancing semantic image retrieval with limited labeled examples via deep learning. Knowl. Based Syst. 163, 252–266 (2019)

    Article  Google Scholar 

  14. Bouchakwa, M., Ayadi, Y., Amous, I.: Multi-level diversification approach of semantic-based image retrieval results. Prog. Artif. Intell. 9(1), 1–30 (2020)

    Article  Google Scholar 

  15. Ortiz-Rodriguez, F., Tiwari, S., Panchal, R., Medina-Quintero, J.M., Barrera, R.: MEXIN: multidialectal ontology supporting NLP approach to improve government electronic communication with the Mexican ethnic groups. In DG. O 2022: The 23rd Annual International Conference on Digital Government Research, pp. 461–463 (2022)

    Google Scholar 

  16. Kumar, A., Deepak, G., Santhanavijayan, A.: HeTOnto: a novel approach for conceptualization, modeling, visualization, and formalization of domain centric ontologies for heat transfer. In: 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–6. IEEE (2020)

    Google Scholar 

  17. Ortiz-Rodriguez, F., Medina-Quintero, J.M., Tiwari, S., Villanueva, V.: EGODO ontology: sharing, retrieving, and exchanging legal documentation across e-government. In: Futuristic Trends for Sustainable Development and Sustainable Ecosystems, pp. 261–276. IGI Global (2022)

    Google Scholar 

  18. Tiwari, S., Siarry, P., Mehta, S., Jabbar, M.A.: Tools, Languages, Methodologies for Representing Semantics on the Web of Things. Wiley, New York (2022)

    Google Scholar 

  19. Haribabu, S., Siva Sai Kumar, P., Padhy, S., Deepak, G., Santhanavijayan, A., Kumar, N.: A novel approach for ontology focused inter-domain personalized search based on semantic set expansion. In: 2019 Fifteenth International Conference on Information Processing (ICINPRO), pp. 1–5. IEEE (2019)

    Google Scholar 

  20. Surya, D., Deepak, G., Santhanavijayan, A.: KSTAR: a knowledge based approach for socially relevant term aggregation for web page recommendation. In: Motahhir, S., Bossoufi, B. (eds.) ICDTA 2021. LNNS, vol. 211, pp. 555–564. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73882-2_50

    Chapter  Google Scholar 

  21. Tiwari, S., Gaurav, D., Srivastava, A., Rai, C., Abhishek, K.: A preliminary study of knowledge graphs and their construction. In: Tavares, J.M.R.S., Chakrabarti, S., Bhattacharya, A., Ghatak, S. (eds.) Emerging Technologies in Data Mining and Information Security. LNNS, vol. 164, pp. 11–20. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9774-9_2

    Chapter  Google Scholar 

  22. Deepak, G., Kumar, N., Santhanavijayan, A.: A semantic approach for entity linking by diverse knowledge integration incorporating role-based chunking. Procedia Comput. Sci. 167, 737–746 (2020)

    Article  Google Scholar 

  23. Panchal, R., Swaminarayan, P., Tiwari, S., Ortiz-Rodriguez, F.: AISHE-Onto: a semantic model for public higher education universities. In: DG. O2021: The 22nd Annual International Conference on Digital Government Research, pp. 545–547 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Deepak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohnish, S., Deepak, G., Praveen, S.V., Sheeba Priyadarshini, J. (2022). DKMI: Diversification of Web Image Search Using Knowledge Centric Machine Intelligence. In: Villazón-Terrazas, B., Ortiz-Rodriguez, F., Tiwari, S., Sicilia, MA., Martín-Moncunill, D. (eds) Knowledge Graphs and Semantic Web . KGSWC 2022. Communications in Computer and Information Science, vol 1686. Springer, Cham. https://doi.org/10.1007/978-3-031-21422-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21422-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21421-9

  • Online ISBN: 978-3-031-21422-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics