iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-21175-1_11
A Non Exhaustive Search of Exhaustiveness | SpringerLink
Skip to main content

A Non Exhaustive Search of Exhaustiveness

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2022)

Abstract

Knowledge of how small molecules interact with target proteins is of great interest in many fields, especially in drug discovery. Generally, this knowledge is obtained in time-consuming and very expensive wet experiments, which emphasises the importance of in silico computational predictions by docking simulations. There are many available docking software and among them Autodock Vina is one of the most accurate and largely applied in many studies. In Autodock Vina, among the different parameter settings, the Exhaustiveness is of crucial importance as it is directly related to the accuracy of the resulting poses. In this work, we investigate the Exhaustiveness parameter in a set of 4,463 protein-ligand complexes (PDBbind2018 refined dataset) for which the correct ligand pose is known. The quality of the Autodock Vina results is assessed by the distance between the experimental and the predicted ligand poses and by the Free Energy of Binding calculated by Autodock Vina. The main purpose of the analysis discussed in this paper is to help users define the Exhaustiveness parameter and thus achieve a good trade-off between simulation time and pose prediction quality. The results suggest that there is no difference whether several simulations with small Exhaustiveness or a few simulations with high Exhaustiveness setting are performed. In addition, the results give a good indication of the number of simulations and Exhaustiveness setting required for meaningful docking results with AutoDock Vina.

This study was supported by CAPES Edital Biologia Computacional (51/2013), CAPES Financial Code 001 and CNPq (439582/2018-0).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Click2drug homepage. http://www.click2drug.org/. Accessed 18 July 2022

  2. Chen, Y.C.: Beware of docking! Trends Pharmacol. Sci. 36(2), 78–95 (2015)

    Article  Google Scholar 

  3. Devaurs, D., et al.: Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins. BMC Mol. Cell Biol. 20(1), 1–15 (2019)

    Article  CAS  Google Scholar 

  4. Dhanik, A., McMurray, J.S., Kavraki, L.E.: DINC: a new AutoDock-based protocol for docking large ligands. BMC Struct. Biol. 13(1), S11 (2013). https://doi.org/10.1186/1472-6807-13-S1-S11

    Article  Google Scholar 

  5. Eberhardt, J., Santos-Martins, D., Tillack, A.F., Forli, S.: AutoDock vina 12 0: new docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61(8), 3891–3898 (2021)

    Article  CAS  Google Scholar 

  6. Forli, S., Huey, R., Pique, M.E., Sanner, M.F., Goodsell, D.S., Olson, A.J.: Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11(5), 905–19 (2016)

    Article  CAS  Google Scholar 

  7. Friesner, R.A., et al.: Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49(21), 6177–6196 (2006). https://doi.org/10.1021/jm051256o. PMID: 17034125

  8. García-Godoy, M.J., López-Camacho, E., García-Nieto, J., Del Ser, J., Nebro, A.J., Aldana-Montes, J.F.: Bio-inspired optimization for the molecular docking problem: state of the art, recent results and perspectives. Appl. Soft Comput. 79, 30–45 (2019)

    Article  Google Scholar 

  9. Jaghoori, M.M., Bleijlevens, B., Olabarriaga, S.D.: 1001 ways to run AutoDock vina for virtual screening. J. Comput. Aided Mol. Des. 30(3), 237–249 (2016). https://doi.org/10.1007/s10822-016-9900-9

    Article  CAS  Google Scholar 

  10. Jaghoori, M.M., Van Altena, A.J., Bleijlevens, B., Olabarriaga, S.D.: A grid-enabled virtual screening gateway. In: 2014 6th International Workshop on Science Gateways, pp. 24–29. IEEE (2014)

    Google Scholar 

  11. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.: Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267(3), 727–748 (1997)

    Article  CAS  Google Scholar 

  12. Keretsu, S., Bhujbal, S.P., Cho, S.J.: Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci. Rep. 10(1), 1–14 (2020)

    Article  Google Scholar 

  13. Liu, Z., et al.: PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31(3), 405–412 (2014)

    Article  CAS  Google Scholar 

  14. Liu, Z., et al.: Forging the basis for developing protein-ligand interaction scoring functions. Acc. Chem. Res. 50(2), 302–309 (2017)

    Article  CAS  Google Scholar 

  15. Nguyen, N.T., et al.: AutoDock vina adopts more accurate binding poses but AutoDock4 forms better binding affinity. J. Chem. Inf. Model. 60(1), 204–211 (2019)

    Article  Google Scholar 

  16. Pagadala, N.S., Syed, K., Tuszynski, J.: Software for molecular docking: a review. Biophys. Rev. 9(2), 91–102 (2017). https://doi.org/10.1007/s12551-016-0247-1

    Article  CAS  Google Scholar 

  17. Rentzsch, R., Renard, B.Y.: Docking small peptides remains a great challenge: an assessment using AutoDock vina. Brief. Bioinform. 16(6), 1045–1056 (2015)

    Article  CAS  Google Scholar 

  18. Schrödinger, LLC: The PyMOL molecular graphics system, version 1.8 (2015)

    Google Scholar 

  19. Su, M., et al.: Comparative assessment of scoring functions: the CASF-2016 update. J. Chem. Inf. Model. 59(2), 895–913 (2018)

    Article  Google Scholar 

  20. Sulimov, V.B., Kutov, D.C., Taschilova, A.S., Ilin, I.S., Tyrtyshnikov, E.E., Sulimov, A.V.: Docking paradigm in drug design. Curr. Top. Med. Chem. 21(6), 507–546 (2021)

    Article  CAS  Google Scholar 

  21. Tietze, S., Apostolakis, J.: GlamDock: development and validation of a new docking tool on several thousand protein- ligand complexes. J. Chem. Inf. Model. 47(4), 1657–1672 (2007)

    Article  CAS  Google Scholar 

  22. Trott, O., Olson, A.J.: AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010). https://doi.org/10.1002/jcc.21334, https://dx.doi.org/10.1002/jcc.21334

  23. Wang, C., Zhang, Y.: Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J. Comput. Chem. 38(3), 169–177 (2017)

    Article  Google Scholar 

  24. Wang, R., Fang, X., Lu, Y., Yang, C.Y., Wang, S.: The PDBbind database: methodologies and updates. J. Med. Chem. 48(12), 4111–4119 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina dos Santos Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cecotti, L.K.S., Balboni, M.D.C., Arce, O.E.A., Machado, K.d.S., Werhli, A.V. (2022). A Non Exhaustive Search of Exhaustiveness. In: Scherer, N.M., de Melo-Minardi, R.C. (eds) Advances in Bioinformatics and Computational Biology. BSB 2022. Lecture Notes in Computer Science(), vol 13523. Springer, Cham. https://doi.org/10.1007/978-3-031-21175-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21175-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21174-4

  • Online ISBN: 978-3-031-21175-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics