Abstract
Event cameras are bio-inspired sensors that asynchronously capture per-pixel brightness change and trigger a stream of events instead of frame-based images. Each event stream is generally split into multiple sliding windows for subsequent processing. However, most existing event-based methods ignore the motion continuity between adjacent spatiotemporal windows, which will result in the loss of dynamic information and additional computational costs. To efficiently extract strong features for event streams containing dynamic information, this paper proposes a novel memory-based network with dual-branch, namely MENet. It contains a base branch with a full-sized event point-wise processing structure to extract the base features and an incremental branch equipped with a light-weighted network to capture the temporal dynamics between two adjacent spatiotemporal windows. For enhancing the features, especially in the incremental branch, a point-wise memory bank is designed, which sketches the representative information of event feature space. Compared with the base branch, the incremental branch reduces the computational complexity up to 5 times and improves the speed by 19 times. Experiments show that MENet significantly reduces the computational complexity compared with previous methods while achieving state-of-the-art performance on gesture recognition and object recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amir, A., et al.: A low power, fully event-based gesture recognition system. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 7388–7397. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.781
Bardow, P., Davison, A.J., Leutenegger, S.: Simultaneous optical flow and intensity estimation from an event camera. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 884–892. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.102
Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., Andreopoulos, Y.: Graph-based spatial-temporal feature learning for neuromorphic vision sensing. CoRR abs/1910.03579 (2019). http://arxiv.org/abs/1910.03579
Brandli, C., Berner, R., Yang, M., Liu, S., Delbrück, T.: A 240 \({\times }\) 180 130 db 3 \({\mu }s\) latency global shutter spatiotemporal vision sensor. IEEE J. Solid State Circuits 49(10), 2333–2341 (2014). https://doi.org/10.1109/JSSC.2014.2342715
Cai, Q., Pan, Y., Yao, T., Yan, C., Mei, T.: Memory matching networks for one-shot image recognition. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 4080–4088. Computer Vision Foundation/IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00429
Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: Asynchronous convolutional networks for object detection in neuromorphic cameras. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 1656–1665. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPRW.2019.00209
Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: Attention mechanisms for object recognition with event-based cameras. In: IEEE Winter Conference on Applications of Computer Vision, WACV 2019, Waikoloa Village, HI, USA, 7–11 January 2019, pp. 1127–1136. IEEE (2019). https://doi.org/10.1109/WACV.2019.00125
Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: A differentiable recurrent surface for asynchronous event-based data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 136–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_9
Chen, J., Meng, J., Wang, X., Yuan, J.: Dynamic graph CNN for event-camera based gesture recognition. In: IEEE International Symposium on Circuits and Systems, ISCAS 2020, Sevilla, Spain, 10–21 October 2020, pp. 1–5. IEEE (2020). https://doi.org/10.1109/ISCAS45731.2020.9181247
Cheng, W., Luo, H., Yang, W., Yu, L., Chen, S., Li, W.: DET: a high-resolution DVS dataset for lane extraction. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 1666–1675. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPRW.2019.00210
Gallego, G., Rebecq, H., Scaramuzza, D.: A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 3867–3876. Computer Vision Foundation/IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00407
Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of representations for asynchronous event-based data. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), 27 October–2 November 2019, pp. 5632–5642. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00573
Gehrig, D., Rebecq, H., Gallego, G., Scaramuzza, D.: Eklt: asynchronous photometric feature tracking using events and frames. Int. J. Comput. Vision 128, 601–618 (2019)
Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S., van den Hengel, A.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), 27 October–2 November 2019, pp. 1705–1714. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00179
Li, H., Liu, H., Ji, X., Li, G., Shi, L.: Cifar10-dvs: an event-stream dataset for object classification. Front. Neurosci. 11, 309 (2017)
He, W., et al.: Comparing snns and rnns on neuromorphic vision datasets: similarities and differences. CoRR abs/2005.02183 (2020). https://arxiv.org/abs/2005.02183
Huang, H., Yu, A., He, R.: Memory oriented transfer learning for semi-supervised image deraining. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, 19–25 June 2021, pp. 7732–7741. Computer Vision Foundation/IEEE (2021)
Jack, D., Maire, F., Denman, S., Eriksson, A.: Sparse convolutions on continuous domains for point cloud and event stream networks. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12622, pp. 400–416. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69525-5_24
Jiang, Z., Zhang, Y., Zou, D., Ren, J.S.J., Lv, J., Liu, Y.: Learning event-based motion deblurring. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 3317–3326. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00338, https://openaccess.thecvf.com/content_CVPR_2020/html/Jiang_Learning_Event-Based_Motion_Deblurring_CVPR_2020_paper.html
Kaiser, L., Nachum, O., Roy, A., Bengio, S.: Learning to remember rare events. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?id=SJTQLdqlg
Khairallah, M.Z., Bonardi, F., Roussel, D., Bouchafa, S.: PCA event-based optical flow for visual odometry. CoRR abs/2105.03760 (2021). https://arxiv.org/abs/2105.03760
Khoei, M.A., Yousefzadeh, A., Pourtaherian, A., Moreira, O., Tapson, J.: Sparnet: sparse asynchronous neural network execution for energy efficient inference. In: 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2020, Genova, Italy, 31 August–2 September 2020, pp. 256–260. IEEE (2020). https://doi.org/10.1109/AICAS48895.2020.9073827
Kim, H., Leutenegger, S., Davison, A.J.: Real-time 3D reconstruction and 6-DoF tracking with an event camera. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 349–364. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_21
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980
Krizhevsky, A.: Learning multiple layers of features from tiny images, pp. 32–33 (2009). https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
Kugele, A., Pfeil, T., Pfeiffer, M., Chicca, E.: Efficient processing of spatio-temporal data streams with spiking neural networks. Front. Neuroscie. 14, 439 (2020). https://doi.org/10.3389/fnins.2020.00439, https://www.frontiersin.org/article/10.3389/fnins.2020.00439
Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.: HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1346–1359 (2017). https://doi.org/10.1109/TPAMI.2016.2574707
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Lee, S., Kim, H.G., Choi, D.H., Kim, H., Ro, Y.M.: Video prediction recalling long-term motion context via memory alignment learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, 19–25 June 2021, pp. 3054–3063. Computer Vision Foundation/IEEE (2021)
Lichtsteiner, P., Posch, C., Delbrück, T.: A 128\({\times }\)128 120 db 15 \({\mu }s\) latency asynchronous temporal contrast vision sensor. IEEE J. Solid State Circuits 43(2), 566–576 (2008). https://doi.org/10.1109/JSSC.2007.914337
Liu, Q., Ruan, H., Xing, D., Tang, H., Pan, G.: Effective AER object classification using segmented probability-maximization learning in spiking neural networks. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020, pp. 1308–1315. AAAI Press (2020). https://aaai.org/ojs/index.php/AAAI/article/view/5486
Manderscheid, J., Sironi, A., Bourdis, N., Migliore, D., Lepetit, V.: Speed invariant time surface for learning to detect corner points with event-based cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 10245–10254. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.01049
Maqueda, A.I., Loquercio, A., Gallego, G., García, N., Scaramuzza, D.: Event-based vision meets deep learning on steering prediction for self-driving cars. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 5419–5427. Computer Vision Foundation/IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00568, http://openaccess.thecvf.com/content_cvpr_2018/html/Maqueda_Event-Based_Vision_Meets_CVPR_2018_paper.html
Massa, R., Marchisio, A., Martina, M., Shafique, M.: An efficient spiking neural network for recognizing gestures with a DVS camera on the loihi neuromorphic processor. CoRR abs/2006.09985 (2020). https://arxiv.org/abs/2006.09985
Messikommer, N., Gehrig, D., Loquercio, A., Scaramuzza, D.: Event-based asynchronous sparse convolutional networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 415–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_25
Miller, A.H., Fisch, A., Dodge, J., Karimi, A., Bordes, A., Weston, J.: Key-value memory networks for directly reading documents. In: Su, J., Carreras, X., Duh, K. (eds.) Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, 1–4 November 2016, pp. 1400–1409. The Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/d16-1147
Mitrokhin, A., Hua, Z., Fermüller, C., Aloimonos, Y.: Learning visual motion segmentation using event surfaces. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 14402–14411. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.01442
Mueggler, E., Bartolozzi, C., Scaramuzza, D.: Fast event-based corner detection. In: British Machine Vision Conference 2017, BMVC 2017, London, UK, 4–7 September 2017. BMVA Press (2017). https://www.dropbox.com/s/vicqrsz0yicq65c/0070.pdf?dl=1
Munda, G., Reinbacher, C., Pock, T.: Real-time intensity-image reconstruction for event cameras using manifold regularisation. Int. J. Comput. Vision 126(12), 1381–1393 (2018). https://doi.org/10.1007/s11263-018-1106-2
Nguyen, A., Do, T., Caldwell, D.G., Tsagarakis, N.G.: Real-time 6dof pose relocalization for event cameras with stacked spatial LSTM networks. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 1638–1645. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPRW.2019.00207
Orchard, G., Benosman, R., Etienne-Cummings, R., Thakor, N.V.: A spiking neural network architecture for visual motion estimation. In: 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), Rotterdam, The Netherlands, 31 October–2 November 2013, pp. 298–301. IEEE (2013). https://doi.org/10.1109/BioCAS.2013.6679698
Orchard, G., Jayawant, A., Cohen, G., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades (2015)
Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.V., Benosman, R.: Hfirst: a temporal approach to object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2028–2040 (2015). https://doi.org/10.1109/TPAMI.2015.2392947
Pan, L., Liu, M., Hartley, R.: Single image optical flow estimation with an event camera. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 1669–1678. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00174
Pan, L., Scheerlinck, C., Yu, X., Hartley, R., Liu, M., Dai, Y.: Bringing a blurry frame alive at high frame-rate with an event camera. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 6820–6829. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00698
Paredes-Vallés, F., Scheper, K.Y.W., de Croon, G.C.H.E.: Unsupervised learning of a hierarchical spiking neural network for optical flow estimation: from events to global motion perception. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2051–2064 (2020). https://doi.org/10.1109/TPAMI.2019.2903179
Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 14360–14369. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.01438, https://openaccess.thecvf.com/content_CVPR_2020/html/Park_Learning_Memory-Guided_Normality_for_Anomaly_Detection_CVPR_2020_paper.html
Pei, W., Zhang, J., Wang, X., Ke, L., Shen, X., Tai, Y.: Memory-attended recurrent network for video captioning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 8347–8356. Computer Vision Foundation / IEEE (2019). https://doi.org/10.1109/CVPR.2019.00854, http://openaccess.thecvf.com/content_CVPR_2019/html/Pei_Memory-Attended_Recurrent_Network_for_Video_Captioning_CVPR_2019_paper.html
Posch, C., Matolin, D., Wohlgenannt, R.: A QVGA 143 db dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid State Circuits 46(1), 259–275 (2011). https://doi.org/10.1109/JSSC.2010.2085952
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 5099–5108 (2017)
Ramesh, B., Yang, H., Orchard, G., Thi, N.A.L., Zhang, S., Xiang, C.: DART: distribution aware retinal transform for event-based cameras. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2767–2780 (2020). https://doi.org/10.1109/TPAMI.2019.2919301
Rebecq, H., Gallego, G., Mueggler, E., Scaramuzza, D.: EMVS: event-based multi-view stereo—3D reconstruction with an event camera in real-time. Int. J. Comput. Vision 126(12), 1394–1414 (2017). https://doi.org/10.1007/s11263-017-1050-6
Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: Events-to-video: bringing modern computer vision to event cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 3857–3866. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00398
Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: High speed and high dynamic range video with an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 1964–1980 (2021). https://doi.org/10.1109/TPAMI.2019.2963386
, Sekikawa, Y., Hara, K., Saito, H.: Eventnet: asynchronous recursive event processing. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 3887–3896. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00401
Shi, C., Li, J., Wang, Y., Luo, G.: Exploiting lightweight statistical learning for event-based vision processing. IEEE Access 6, 19396–19406 (2018). https://doi.org/10.1109/ACCESS.2018.2823260
Shrestha, S.B., Orchard, G.: SLAYER: spike layer error reassignment in time. CoRR abs/1810.08646 (2018). http://arxiv.org/abs/1810.08646
Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 1731–1740. Computer Vision Foundation/IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00186
Wang, Q., Zhang, Y., Yuan, J., Lu, Y.: Space-time event clouds for gesture recognition: From RGB cameras to event cameras. In: IEEE Winter Conference on Applications of Computer Vision, WACV 2019, Waikoloa Village, HI, USA, 7–11 January 2019, pp. 1826–1835. IEEE (2019). https://doi.org/10.1109/WACV.2019.00199
Weston, J., Chopra, S., Bordes, A.: Memory networks. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1410.3916
Wu, Z., Zhang, H., Lin, Y., Li, G., Wang, M., Tang, Y.: Liaf-net: leaky integrate and analog fire network for lightweight and efficient spatiotemporal information processing. CoRR abs/2011.06176 (2020). https://arxiv.org/abs/2011.06176
Li, Y., Zhou, H., Yang, B.: Graph-based asynchronous event processing for rapid object recognition. In: ICCV, pp. 934–943 (2021)
Yang, J., Zhang, Q., Ni, B., Li, L., Liu, J., Zhou, M., Tian, Q.: Modeling point clouds with self-attention and gumbel subset sampling. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 3323–3332. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00344
Yao, M., et al.: Temporal-wise attention spiking neural networks for event streams classification. CoRR abs/2107.11711 (2021). https://arxiv.org/abs/2107.11711
Zheng, H., Wu, Y., Deng, L., Hu, Y., Li, G.: Going deeper with directly-trained larger spiking neural networks. CoRR abs/2011.05280 (2020). https://arxiv.org/abs/2011.05280
Zhou, Y., Gallego, G., Shen, S.: Event-based stereo visual odometry. IEEE Trans. Rob. 37(5), 1433–1450 (2021). https://doi.org/10.1109/TRO.2021.3062252
Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 989–997. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00108, http://openaccess.thecvf.com/content_CVPR_2019/html/Zhu_Unsupervised_Event-Based_Learning_of_Optical_Flow_Depth_and_Egomotion_CVPR_2019_paper.html
Zhu, L., Yang, Y.: Inflated episodic memory with region self-attention for long-tailed visual recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 4343–4352. Computer Vision Foundation/IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00440
Acknowledgments
This work was supported in part by the National Key Research and Development Program of China under Grant 2020AAA0103402, Jiangsu Key Research and Development Plan (No. BE2021012-2), and NSFC 61876182, 61906195.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, L., Zhang, Y., Cheng, K., Cheng, J., Lu, H. (2022). MENet: A Memory-Based Network with Dual-Branch for Efficient Event Stream Processing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13684. Springer, Cham. https://doi.org/10.1007/978-3-031-20053-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-20053-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20052-6
Online ISBN: 978-3-031-20053-3
eBook Packages: Computer ScienceComputer Science (R0)