iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-18907-4_6
Correlated Matching and Structure Learning for Unsupervised Domain Adaptation | SpringerLink
Skip to main content

Correlated Matching and Structure Learning for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13534))

Included in the following conference series:

  • 3056 Accesses

Abstract

For cross-domain tasks in real-world, a source domain and a target domain often have different marginal probability distribution and conditional probability distribution. To leverage the distribution difference between the source and target domain, domain adaptation has been applied in many fields. Unfortunately, as most of the existing domain adaptation methods only focus on eliminating the distribution discrepancy between the two domains, they do not make full use of the correlation information and data distribution structure between the two domains. In this paper, we put forward a novel domain adaptation method named correlated matching and structure learning (CMSL), which considers the association information between source and target domains, and extracts the feature representation and thus can learn the maximization correlation features between the two domains. Simultaneously, the class centroids of the source data are used to cluster the target data, and a local manifold self-learning strategy is introduced to the target domain to preserve the underlying structure of the data. Experimental results on six data benchmarks show that our proposed method achieves good classification performance and outperforms several state-of-the-art unsupervised domain adaptation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/jindongwang/transferlearning.

References

  1. Zhang, L., Wang, S., Huang, G., Zuo, W., Yang, J., Zhang, D.: Manifold criterion guided transfer learning via intermediate domain generation. IEEE Trans. Neural Netw. Learn. Syst. 30(12), 3759–3773 (2019)

    Article  MathSciNet  Google Scholar 

  2. Yan, C., Li, L., Zhang, C., Liu, B., Zhang, Y., Dai, Q.: Cross-modality bridging and knowledge transferring for image understanding. IEEE Trans. Multimedia 21(10), 2675–2685 (2019)

    Article  Google Scholar 

  3. Xiao, N., Zhang, L.: Dynamic weighted learning for unsupervised domain adaptation. In: CVPR, pp. 15237–15246 (2021)

    Google Scholar 

  4. Wei, G., Lan, C., Zeng, W., Chen, Z.: MetaAlign: coordinating domain alignment and classification for unsupervised domain adaptation. In: CVPR, pp. 16638–16648 (2021)

    Google Scholar 

  5. Wang, S., Zhang, L., Zuo, W., Zhang, B.: Class-specific reconstruction transfer learning for visual recognition across domains. IEEE Trans. Image Process. 29, 2424–2438 (2020)

    Article  Google Scholar 

  6. Zhang, L., Zuo, W., Zhang, D.: LSDT: latent sparse domain transfer learning for visual adaptation. IEEE Trans. Image Process. 25(3), 1177–1191 (2016)

    Article  MathSciNet  Google Scholar 

  7. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

    Article  Google Scholar 

  8. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: CVPR, pp. 2200–2207 (2013)

    Google Scholar 

  9. Wang, J., Chen, Y., Hao, S.: Balanced distribution adaptation for transfer learning. In: ICDM, pp. 1129–1134 (2017)

    Google Scholar 

  10. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: CVPR, pp. 1859–1867 (2017)

    Google Scholar 

  11. Zhang, L., Zhang, D.: Visual understanding via multi-feature shared learning with global consistency. IEEE Trans. Multimedia 18(2), 247–259 (2016)

    Article  Google Scholar 

  12. Yan, H., Li, Z., Wang, Q., Li, P., Xu, Y., Zuo, W.: Weighted and class-specific maximum mean discrepancy for unsupervised domain adaptation. IEEE Trans. Multimedia 22(9), 2420–2433 (2020)

    Article  Google Scholar 

  13. Li, L., Zhang, Z.: Semi-supervised domain adaptation by covariance matching. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2724–2739 (2019)

    Article  Google Scholar 

  14. Zhang, L., Fu, J., Wang, S., Zhang, D., Dong, Z., Chen, C.P.: Guide subspace learning for unsupervised domain adaptation. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3374–3388 (2020)

    Article  MathSciNet  Google Scholar 

  15. Hotelling, H.: Relations between Two Sets of Variates. Biometrika (1936)

    Google Scholar 

  16. Wang, W., Lu, Y., Lai, Z.: Canonical correlation discriminative learning for domain adaptation. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 567–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_39

    Chapter  Google Scholar 

  17. Hua, M., Lau, M., Pei, J., Wu, K.: Continuous K-means monitoring with low reporting cost in sensor networks. IEEE Trans. Knowl. Data Eng. 21(12), 1679–1691 (2009)

    Article  Google Scholar 

  18. Tian, L., Tang, Y., Hu, L., Ren, Z., Zhang, W.: Domain Adaptation by class centroid matching and local manifold self-learning. IEEE Trans. Image Process. 29(10), 9703–9718 (2020)

    Article  MathSciNet  Google Scholar 

  19. Nie, F., Wang, X., Huang, H.: Clustering and projected clustering with adaptive neighbors. In: KDD, pp. 977–986 (2014)

    Google Scholar 

  20. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: CVPR, pp. 2066–2073 (2012)

    Google Scholar 

  21. Li, S., Song, S., Huang, G., Ding, Z.: Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Trans. Image Process. 27(9), 4260–4273 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wang, J., Chen, Y., Yu, H., Huang, M., Yang, Q.: Easy transfer learning by exploiting intra-domain structures. In: Proceedings of IEEE International Conference on Multimedia Expo, pp. 1210–1215, July 2019

    Google Scholar 

  23. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  24. McAuley, J., Targett, C., Shi, Q., Hengel, A.: Image-based recommendations on styles and substitutes. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–52 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62176162, 61976145, and 62076129), the Guangdong Basic and Applied Basic Research Foundation (2019A1515011493, 2021A1515011318), the China University Industry-University-Research Innovation Fund (2020HYA02013), the Shenzhen Municipal Science and Technology Innovation Council (JCYJ20190808113411274), and the Major Project of the New Generation of Artificial Intelligence of China (2018AAA0102900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, X., Lu, Y., Wen, J., Lai, Z. (2022). Correlated Matching and Structure Learning for Unsupervised Domain Adaptation. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13534. Springer, Cham. https://doi.org/10.1007/978-3-031-18907-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18907-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18906-7

  • Online ISBN: 978-3-031-18907-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics