iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-18050-7_64
Security Centric Scalable Architecture for Distributed Learning and Knowledge Preservation | SpringerLink
Skip to main content

Security Centric Scalable Architecture for Distributed Learning and Knowledge Preservation

  • Conference paper
  • First Online:
17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022) (SOCO 2022)

Abstract

This article presents the architecture, design and validation of a distributed learning approach, that provides support for knowledge preservation. The architecture is able to provide support for Collaborative Data Mining, Context Aware Data Mining, but also Federated Learning. Improving User Experience, providing support for research activities and providing a framework for production-grade machine learning pipeline automations were the primary objectives for the design of the proposed architecture. Third party service support is available out of the box, maintaining the loose-coupling of the system. Obtained results are promising, the system being validated with a use case on Collaborative Data Mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://mushnomics.org/.

References

  1. Alavi, M., Marakas, G.M., Yoo, Y.: A comparative study of distributed learning environments on learning outcomes. Inf. Syst. Res. 13(4), 404–415 (2002)

    Article  Google Scholar 

  2. Bebensee, T., van de Weerd, I., Brinkkemper, S.: Binary Priority List for Prioritizing Software Requirements. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 67–78. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14192-8_8

    Chapter  Google Scholar 

  3. Blockeel, H., Vanschoren, J.: Experiment databases: towards an improved experimental methodology in machine learning. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 6–17. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9_5

    Chapter  Google Scholar 

  4. Boufea, A., Finkers, R., van Kaauwen, M., Kramer, M., Athanasiadis, I.N.: Managing variant calling files the big data way: using HDFS and apache parquet. In: Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, pp. 219–226 (2017)

    Google Scholar 

  5. Chakraborty, S., Chakraborty, S.: Proof of federated training: accountable cross-network model training and inference. arXiv preprint arXiv:2204.06919 (2022)

  6. Chen, M., et al.: Distributed learning in wireless networks: recent progress and future challenges. IEEE J. Sel. Areas Commun. (2021)

    Google Scholar 

  7. Clements, P.C.: Active reviews for intermediate designs. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST (2000)

    Google Scholar 

  8. Czarnowski, I., Jedrzejowicz, P., Chao, K.-M., Yildirim, T.: Overcoming “big data”. barriers in machine learning techniques for the real-life applications (2018)

    Google Scholar 

  9. Danaee, A., de Lamare, R.C., Nascimento, V.H.: Energy-efficient distributed learning with adaptive bias compensation for coarsely quantized signals. In: 2021 IEEE Statistical Signal Processing Workshop (SSP), pp. 61–65. IEEE (2021)

    Google Scholar 

  10. Durrant, A., Markovic, M., Matthews, D., May, D., Enright, J., Leontidis, G.: The role of cross-silo federated learning in facilitating data sharing in the agri-food sector. Comput. Electron. Agric. 193, 106648 (2022)

    Article  Google Scholar 

  11. Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 116, 1–8 (2018)

    Article  Google Scholar 

  12. Isermann, R.: Model-based fault-detection and diagnosis-status and applications. Ann. Rev. Control 29(1), 71–85 (2005)

    Article  Google Scholar 

  13. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The architecture tradeoff analysis method. In: Proceedings. Fourth IEEE International Conference on Engineering of Complex Computer Systems (cat. no. 98ex193), pp. 68–78. IEEE (1998)

    Google Scholar 

  14. Kühne, T.: On model compatibility with referees and contexts. Softw. Syst. Model. 12(3), 475–488 (2013)

    Article  Google Scholar 

  15. Kumar, P., Gupta, G.P., Tripathi, R.: PEFL: deep privacy-encoding based federated learning framework for smart agriculture. IEEE Micro 42, 33–40 (2021)

    Article  Google Scholar 

  16. Li, L., Xu, W., Chen, T., Giannakis, G.B., Ling, Q.: RSA: byzantine-robust stochastic aggregation methods for distributed learning from heterogeneous datasets. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1544–1551 (2019)

    Google Scholar 

  17. Liu, J., et al.: From distributed machine learning to federated learning: a survey. Knowl. Inf. Syst. 64(4), 885–917 (2022). https://doi.org/10.1007/s10115-022-01664-x

    Article  Google Scholar 

  18. Matei, O., Anton, C., Bozga, A., Pop, P.: Multi-layered architecture for soil moisture prediction in agriculture 4.0. In: Proceedings of International Conference on Computers and Industrial Engineering, CIE, vol. 2, pp. 39–48 (2017)

    Google Scholar 

  19. Matei, O., Anton, C., Scholze, S., Cenedese, C.: Multi-layered data mining architecture in the context of internet of things. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 1193–1198. IEEE (2017)

    Google Scholar 

  20. Matei, O., Erdei, R., Moga, A., Heb, R.: A serverless architecture for a wearable face recognition application. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12667, pp. 642–655. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68787-8_46

    Chapter  Google Scholar 

  21. Olson, R.S., Moore, J.H.: TPOT: a tree-based pipeline optimization tool for automating machine learning. In: Workshop on Automatic Machine Learning, pp. 66–74. PMLR (2016)

    Google Scholar 

  22. Pulido-Gaytan, L.B., Tchernykh, A., Cortés-Mendoza, J.M., Babenko, M., Radchenko, G.: A survey on privacy-preserving machine learning with fully homomorphic encryption. In: Nesmachnow, S., Castro, H., Tchernykh, A. (eds.) CARLA 2020. CCIS, vol. 1327, pp. 115–129. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68035-0_9

    Chapter  Google Scholar 

  23. Siau, K., Wang, W.: Building trust in artificial intelligence, machine learning, and robotics. Cutter Bus. Technol. J. 31(2), 47–53 (2018)

    Google Scholar 

  24. Vishal, P., Bhattacharya, S.: Application of the pareto principle in rapid application development model. Citeseer (2013)

    Google Scholar 

  25. Vogel, C.: SAAM (software architecture analysis method). Universität Karlsruhe, p. 1 (2008)

    Google Scholar 

  26. Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Han, Yu.: Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13(3), 1–207 (2019)

    Google Scholar 

  27. Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Byzantine-robust distributed learning: towards optimal statistical rates. In: International Conference on Machine Learning, pp. 5650–5659. PMLR (2018)

    Google Scholar 

Download references

Acknowledgment

This research was made possible by funding from the ICT-AGRI-FOOD 2019 Joint Call. This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project number COFUND-ICT-AGRI-FOOD-MUSHNOMICS 205.2020, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Erdei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erdei, R., Delinschi, D., Matei, O. (2023). Security Centric Scalable Architecture for Distributed Learning and Knowledge Preservation. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_64

Download citation

Publish with us

Policies and ethics