Abstract
This paper introduces the specific requirements of the domain of train operation and its regulatory framework to the AI community. It assesses sensor sets for driverless and unattended train operation. It lists functionally justified ranges of technical specifications for sensors of different types, which will generate input for AI perception algorithms (i.e. for signal and obstacle detection). Since an optimal sensor set is the subject of research, this paper provides the specification of a generic data acquisition platform as a crucial step. Some particular results are recommendations for the minimal resolution and shutter type for image sensors, as well as beam steering methods and resolutions for LiDARs.
Supported by German Centre for Rail Traffic Research DISCLAIMER: This is not an official statement, guideline or directive of the German Federal Railway Authority.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aeva Becomes First FMCW 4D LiDAR on NVIDIA DRIVE Autonomous Vehicle Platform. Businesswire (2022)
DB Fernverkehr AG: Richtlinie 418.10 - 90 “Triebfahrzeugführerheft der DB Fernverkehr AG”. DB Fernverkehr AG, Frankfurt, Version 10. Accessed 15 Dec 2019
DB Fernverkehr AG: Richtlinie 408.20 “Fahrdienstvorschrift - Richtlinien 408.21 - 27 und 408.48”. DB Netz AG, Frankfurt, Version 4.0. Accessed 12 Dec 2021
Baker, S., Bennett, E., Kang, S.B., Szeliski, R.: Removing Rolling Shutter Wobble. In: IEEE CVPR, pp. 2392–2399 (2010)
BMDV: Autonomes Fahren im Schienenverkehr. FE-Nr. 97.370/2016 (2018)
Bodensteiner, C., Bullinger, S., Arens, M.: Multispectral matching using conditional generative appearance modeling. In: IEEE AVSS, pp. 1–6 (2018)
Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of imagenet as an alternative to the cifar datasets. arXiv:1707.08819 (2017)
Cordts, M., et al.: The Cityscapes dataset for semantic urban scene understanding. In: IEEE CVPR (2016)
DB Cargo AG, Mainz: DBCDE-003 “Regelbuch - Basisteil für Mitarbeiter im Bahnbetrieb (inkl. Führen von Triebfahrzeugen)”. DB Cargo AG, Mainz, Version 04. Accessed 15 Dec 2019
DB Regio AG: DBREGIO-003 “Regelbuch - Basisteil für Mitarbeiter im Bahnbetrieb (inkl. Führen von Triebfahrzeugen)”. DB Regio AG, Frankfurt, Version 04a. Accessed 13 Dec 2020
Deutsche Bahn AG: Rahmenrichtlinie 107.0000A02 Ärztliche Regeln: Med. Kriterien 5.0. In: Rahmenrichtlinie 107.0000 Grundlagen: Medizinische und psychologische Eignung 8.0 (2020)
Digitale Schiene Deutschland: Sensors4rail testet erstmals sensorbasierte Wahrnehmungssysteme im Bahnbetrieb (2021). https://digitale-schiene-deutschland.de/Sensors4Rail
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)
European Commission: Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts (2021)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: CVPR (2012)
Harb, J., Rébéna, N., Chosidow, R., Roblin, G., Potarusov, R., Hajri, H.: FRSign: a large-scale traffic light dataset for autonomous trains. arXiv:2002.05665 (2020)
Hedborg, J., Forssén, P.E., Felsberg, M., Ringaby, E.: Rolling shutter bundle adjustment. In: IEEE CVPR, pp. 1434–1441 (2012)
Herrmann, C., Ruf, M., Beyerer, J.: CNN-based thermal infrared person detection by domain adaptation. In: Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything, vol. 10643, p. 1064308. SPIE (2018)
Ho, N., Pham, M., Vo, N.D., Nguyen, K.: Vehicle detection at night time. In: NAFOSTED NICS, pp. 250–255 (2020)
Kalb, T., Roschani, M., Ruf, M., Beyerer, J.: Continual learning for class-and domain-incremental semantic segmentation. In: 2021 IEEE IV, pp. 1345–1351 (2021)
Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)
Leinhos, D., et al.: Sensorik als technische Voraussetzung für ATO-Funktionen. Technical report Deutsches Zentrum für Schienenverkehrsforschung (2022)
Lin, C.T., Huang, S.W., Wu, Y.Y., Lai, S.H.: GAN-Based Day-to-Night Image Style Transfer for Nighttime Vehicle Detection. IEEE Trans. Intell. Transp. Syst. 22(2), 951–963 (2021)
Liu, R., Yang, C., Sun, W., Wang, X., Li, H.: StereoGAN: bridging synthetic-to-real domain gap by joint optimization of domain translation and stereo matching. In: IEEE/CVF CVPR, pp. 12754–12763 (2020)
Pappaterra, M.J., Flammini, F., Vittorini, V., Bešinović, N.: A systematic review of artificial intelligence public datasets for railway applications. Infrastructures 6(10), 136 (2021)
Ristić-Durrant, D., Franke, M., Michels, K.: A Review of Vision-Based On-Board Obstacle Detection and Distance Estimation in Railways. Sensors 21(10), 3452 (2021)
Rojtberg, P., Pöllabauer, T., Kuijper, A.: Style-transfer GANs for bridging the domain gap in synthetic pose estimator training. In: IEEE AIVR, pp. 188–195 (2020)
Sorokin, A., Forsyth, D.: Utility data annotation with Amazon Mechanical Turk. In: IEEE CVPR, pp. 1–8 (2008)
Tagiew, R., Buder, T., Hofmann, K., Klotz, C., Tilly, R.: Towards nucleation of GoA3+ approval process. In: HPCCT, pp. 41–47 (2021)
Tagiew, R., Buder, T., Tilly, R., Hofmann, K., Klotz, C.: Datensätze für das autonome Fahren als Grundlage für GoA3+. ETR - Eisenbahntechnische Rundschau 9 (2021). https://eurailpress-archiv.de/SingleView.aspx?show=2760103
Triess, L.T., Dreissig, M., Rist, C.B., Zöllner, J.M.: A survey on deep domain adaptation for lidar perception. In: IEEE IV Workshops, pp. 350–357. IEEE (2021)
Wei, Y., Wei, Z., Rao, Y., Li, J., Zhou, J., Lu, J.: LiDAR distillation: bridging the beam-induced domain Gap for 3D object detection. arXiv:2203.14956 (2022)
Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: IEEE/CVF CVPR, pp. 2636–2645 (2020)
Zendel, O., Murschitz, M., Zeilinger, M., Steininger, D., Abbasi, S., Beleznai, C.: Railsem19: a dataset for semantic rail scene understanding. In: IEEE/CVF CVPR (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tagiew, R. et al. (2022). Onboard Sensor Systems for Automatic Train Operation. In: Marrone, S., et al. Dependable Computing – EDCC 2022 Workshops. EDCC 2022. Communications in Computer and Information Science, vol 1656. Springer, Cham. https://doi.org/10.1007/978-3-031-16245-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-16245-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16244-2
Online ISBN: 978-3-031-16245-9
eBook Packages: Computer ScienceComputer Science (R0)