iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-14721-0_9
Do We Really Need to Use Constraint Violation in Constrained Evolutionary Multi-objective Optimization? | SpringerLink
Skip to main content

Do We Really Need to Use Constraint Violation in Constrained Evolutionary Multi-objective Optimization?

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Abstract

Constraint violation has been a building block to design evolutionary multi-objective optimization algorithms for solving constrained multi-objective optimization problems. However, it is not uncommon that the constraint violation is hardly approachable in real-world black-box optimization scenarios. It is unclear that whether the existing constrained evolutionary multi-objective optimization algorithms, whose environmental selection mechanism are built upon the constraint violation, can still work or not when the formulations of the constraint functions are unknown. Bearing this consideration in mind, this paper picks up four widely used constrained evolutionary multi-objective optimization algorithms as the baseline and develop the corresponding variants that replace the constraint violation by a crisp value. From our experiments on both synthetic and real-world benchmark test problems, we find that the performance of the selected algorithms have not been significantly influenced when the constraint violation is not used to guide the environmental selection. The supplementary material of this paper can be found in https://tinyurl.com/23dtdne8.

This work was supported by UKRI Future Leaders Fellowship (MR/S017062/1), EPSRC (2404317), NSFC (62076056), Royal Society (IES/R2/212077) and Amazon Research Award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The supplemental document can be downloaded from here.

References

  1. Andersson, J.: Applications of a multi-objective genetic algorithm to engineering design problems. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 737–751. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_52

    Chapter  MATH  Google Scholar 

  2. Angantyr, A., Andersson, J., Aidanpaa, J.O.: Constrained optimization based on a multiobjective evolutionary algorithm. In: CEC 2003: Proceedings of the 2003 IEEE Congress on Evolutionary Computation, pp. 1560–1567 (2003)

    Google Scholar 

  3. Ariafar, S., Coll-Font, J., Brooks, D.H., Dy, J.G.: ADMMBO: Bayesian optimization with unknown constraints using ADMM. J. Mach. Learn. Res. 20, 123:1–123:26 (2019)

    Google Scholar 

  4. Asafuddoula, M., Ray, T., Sarker, R.A.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2015)

    Article  Google Scholar 

  5. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)

    Article  Google Scholar 

  6. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Article  Google Scholar 

  7. Coello, C.A.C., Christiansen, A.D.: MOSES: a multiobjective optimization tool for engineering design. Eng. Opt. 31(3), 337–368 (1999)

    Article  Google Scholar 

  8. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  10. Fan, Z., Li, W., Cai, X., Hu, K., Lin, H., Li, H.: Angle-based constrained dominance principle in MOEA/D for constrained multi-objective optimization problems. In: CEC 2016: Proceedings of the 2016 IEEE Congress on Evolutionary Computation, pp. 460–467. IEEE (2016)

    Google Scholar 

  11. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Trans. Syst. Man Cybern., Part A 28(1), 26–37 (1998)

    Google Scholar 

  12. Gelbart, M.A., Snoek, J., Adams, R.P.: Bayesian optimization with unknown constraints. In: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI 2014, Quebec City, Quebec, Canada, 23–27 July 2014, pp. 250–259. AUAI (2014)

    Google Scholar 

  13. Harada, K., Sakuma, J., Ono, I., Kobayashi, S.: Constraint-handling method for multi-objective function optimization: Pareto descent repair operator. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 156–170. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_15

    Chapter  Google Scholar 

  14. Hernández-Lobato, J.M., Gelbart, M.A., Hoffman, M.W., Adams, R.P., Ghahramani, Z.: Predictive entropy search for Bayesian optimization with unknown constraints. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015, vol. 37, pp. 1699–1707. JMLR (2015)

    Google Scholar 

  15. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  16. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014)

    Article  Google Scholar 

  17. Jan, M.A., Zhang, Q.: MOEA/D for constrained multiobjective optimization: some preliminary experimental results. In: UKCI 2010: Proceedings of the 2010 UK Workshop on Computational Intelligence, pp. 1–6 (2010)

    Google Scholar 

  18. Jiao, L., Luo, J., Shang, R., Liu, F.: A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems. Appl. Soft Comput. 14, 363–380 (2014)

    Article  Google Scholar 

  19. Jiménez, F., Gómez-Skarmeta, A.F., Sánchez, G., Deb, K.: An evolutionary algorithm for constrained multi-objective optimization. In: CEC 2002: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, pp. 1133–1138 (2002)

    Google Scholar 

  20. Kumar, A., et al.: A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results. Swarm Evol. Comput. 67, 100961 (2021)

    Article  Google Scholar 

  21. Li, K., Chen, R., Fu, G., Yao, X.: Two-archive evolutionary algorithm for constrained multiobjective optimization. IEEE Trans. Evol. Comput. 23(2), 303–315 (2019)

    Article  Google Scholar 

  22. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  23. Liu, Z.Z., Wang, B.C., Tang, K.: Handling constrained multiobjective optimization problems via bidirectional coevolution. IEEE Trans. Cybern., 1–14 (2021, early access)

    Google Scholar 

  24. Liu, Z., Wang, Y., Huang, P.: AnD: a many-objective evolutionary algorithm with angle-based selection and shift-based density estimation. Inf. Sci. 509, 400–419 (2020)

    Article  MathSciNet  Google Scholar 

  25. Martínez, S.Z., Coello, C.A.C.: A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization. In: CEC 2014: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, pp. 429–436 (2014)

    Google Scholar 

  26. Ming, F., Gong, W., Wang, L., Gao, L.: A constrained many-objective optimization evolutionary algorithm with enhanced mating and environmental selections. IEEE Trans. Cybern., 1–13 (2022, early access)

    Google Scholar 

  27. Ming, F., Gong, W., Wang, L., Lu, C.: A tri-population based co-evolutionary framework for constrained multi-objective optimization problems. Swarm Evol. Comput. 70, 101055 (2022)

    Article  Google Scholar 

  28. Oyama, A., Shimoyama, K., Fujii, K.: New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. Jpn. Soc. Aeronaut. Space Sci. Trans. 50, 56–62 (2007)

    Article  Google Scholar 

  29. Peng, C., Liu, H., Gu, F.: An evolutionary algorithm with directed weights for constrained multi-objective optimization. Appl. Soft Comput. 60, 613–622 (2017)

    Article  Google Scholar 

  30. Ponsich, A., Jaimes, A.L., Coello, C.A.C.: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evol. Comput. 17(3), 321–344 (2013)

    Article  Google Scholar 

  31. Ray, T., Tai, K., Seow, K.C.: Multiobjective design optimization by an evolutionary algorithm. Eng. Opt. 33(4), 399–424 (2001)

    Article  Google Scholar 

  32. Shan, X., Li, K.: An improved two-archive evolutionary algorithm for constrained multi-objective optimization. In: Ishibuchi, H., et al. (eds.) EMO 2021. LNCS, vol. 12654, pp. 235–247. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72062-9_19

    Chapter  Google Scholar 

  33. Singh, H.K., Ray, T., Smith, W.: C-PSA: Constrained Pareto simulated annealing for constrained multi-objective optimization. Inf. Sci. 180(13), 2499–2513 (2010)

    Article  Google Scholar 

  34. Ebrahim Sorkhabi, A., Deljavan Amiri, M., Khanteymoori, A.R.: Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization. Soft. Comput. 21(24), 7251–7267 (2016). https://doi.org/10.1007/s00500-016-2422-5

    Article  Google Scholar 

  35. Takahama, T., Sakai, S.: Efficient constrained optimization by the \(\epsilon \) constrained rank-based differential evolution. In: CEC 2012: Proceedings of the 2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)

    Google Scholar 

  36. Thurston, D.L., Srinivasan, S.: Constrained optimization for green engineering decision-making. Environ. Sci. Technol. 37(23), 5389–5397 (2003)

    Article  Google Scholar 

  37. Tian, Y., Zhang, T., Xiao, J., Zhang, X., Jin, Y.: A coevolutionary framework for constrained multiobjective optimization problems. IEEE Trans. Evol. Comput. 25(1), 102–116 (2021)

    Article  Google Scholar 

  38. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132 (2000)

    Google Scholar 

  39. Wang, J., Li, Y., Zhang, Q., Zhang, Z., Gao, S.: Cooperative multiobjective evolutionary algorithm with propulsive population for constrained multiobjective optimization. IEEE Trans. Syst. Man Cybern.: Syst. 52, 3476–3491 (2021)

    Google Scholar 

  40. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. Springer, New York (1945). https://doi.org/10.1007/978-1-4612-4380-9_16

  41. Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint handling in multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 13(3), 514–525 (2009)

    Article  Google Scholar 

  42. Young, N.: Blended ranking to cross infeasible regions in constrained multi-objective problems. In: CIMCA 2005: Proceedings of the 2005 International Conference on Computational Intelligence Modeling, Control and Automation, pp. 191–196 (2005)

    Google Scholar 

  43. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  44. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  45. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Li, K., Li, W. (2022). Do We Really Need to Use Constraint Violation in Constrained Evolutionary Multi-objective Optimization?. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14721-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14720-3

  • Online ISBN: 978-3-031-14721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics