Abstract
Constraint violation has been a building block to design evolutionary multi-objective optimization algorithms for solving constrained multi-objective optimization problems. However, it is not uncommon that the constraint violation is hardly approachable in real-world black-box optimization scenarios. It is unclear that whether the existing constrained evolutionary multi-objective optimization algorithms, whose environmental selection mechanism are built upon the constraint violation, can still work or not when the formulations of the constraint functions are unknown. Bearing this consideration in mind, this paper picks up four widely used constrained evolutionary multi-objective optimization algorithms as the baseline and develop the corresponding variants that replace the constraint violation by a crisp value. From our experiments on both synthetic and real-world benchmark test problems, we find that the performance of the selected algorithms have not been significantly influenced when the constraint violation is not used to guide the environmental selection. The supplementary material of this paper can be found in https://tinyurl.com/23dtdne8.
This work was supported by UKRI Future Leaders Fellowship (MR/S017062/1), EPSRC (2404317), NSFC (62076056), Royal Society (IES/R2/212077) and Amazon Research Award.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The supplemental document can be downloaded from here.
References
Andersson, J.: Applications of a multi-objective genetic algorithm to engineering design problems. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 737–751. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_52
Angantyr, A., Andersson, J., Aidanpaa, J.O.: Constrained optimization based on a multiobjective evolutionary algorithm. In: CEC 2003: Proceedings of the 2003 IEEE Congress on Evolutionary Computation, pp. 1560–1567 (2003)
Ariafar, S., Coll-Font, J., Brooks, D.H., Dy, J.G.: ADMMBO: Bayesian optimization with unknown constraints using ADMM. J. Mach. Learn. Res. 20, 123:1–123:26 (2019)
Asafuddoula, M., Ray, T., Sarker, R.A.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2015)
Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)
Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)
Coello, C.A.C., Christiansen, A.D.: MOSES: a multiobjective optimization tool for engineering design. Eng. Opt. 31(3), 337–368 (1999)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)
Fan, Z., Li, W., Cai, X., Hu, K., Lin, H., Li, H.: Angle-based constrained dominance principle in MOEA/D for constrained multi-objective optimization problems. In: CEC 2016: Proceedings of the 2016 IEEE Congress on Evolutionary Computation, pp. 460–467. IEEE (2016)
Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation. IEEE Trans. Syst. Man Cybern., Part A 28(1), 26–37 (1998)
Gelbart, M.A., Snoek, J., Adams, R.P.: Bayesian optimization with unknown constraints. In: Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI 2014, Quebec City, Quebec, Canada, 23–27 July 2014, pp. 250–259. AUAI (2014)
Harada, K., Sakuma, J., Ono, I., Kobayashi, S.: Constraint-handling method for multi-objective function optimization: Pareto descent repair operator. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 156–170. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_15
Hernández-Lobato, J.M., Gelbart, M.A., Hoffman, M.W., Adams, R.P., Ghahramani, Z.: Predictive entropy search for Bayesian optimization with unknown constraints. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015, vol. 37, pp. 1699–1707. JMLR (2015)
Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8
Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014)
Jan, M.A., Zhang, Q.: MOEA/D for constrained multiobjective optimization: some preliminary experimental results. In: UKCI 2010: Proceedings of the 2010 UK Workshop on Computational Intelligence, pp. 1–6 (2010)
Jiao, L., Luo, J., Shang, R., Liu, F.: A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems. Appl. Soft Comput. 14, 363–380 (2014)
Jiménez, F., Gómez-Skarmeta, A.F., Sánchez, G., Deb, K.: An evolutionary algorithm for constrained multi-objective optimization. In: CEC 2002: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, pp. 1133–1138 (2002)
Kumar, A., et al.: A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results. Swarm Evol. Comput. 67, 100961 (2021)
Li, K., Chen, R., Fu, G., Yao, X.: Two-archive evolutionary algorithm for constrained multiobjective optimization. IEEE Trans. Evol. Comput. 23(2), 303–315 (2019)
Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)
Liu, Z.Z., Wang, B.C., Tang, K.: Handling constrained multiobjective optimization problems via bidirectional coevolution. IEEE Trans. Cybern., 1–14 (2021, early access)
Liu, Z., Wang, Y., Huang, P.: AnD: a many-objective evolutionary algorithm with angle-based selection and shift-based density estimation. Inf. Sci. 509, 400–419 (2020)
Martínez, S.Z., Coello, C.A.C.: A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization. In: CEC 2014: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, pp. 429–436 (2014)
Ming, F., Gong, W., Wang, L., Gao, L.: A constrained many-objective optimization evolutionary algorithm with enhanced mating and environmental selections. IEEE Trans. Cybern., 1–13 (2022, early access)
Ming, F., Gong, W., Wang, L., Lu, C.: A tri-population based co-evolutionary framework for constrained multi-objective optimization problems. Swarm Evol. Comput. 70, 101055 (2022)
Oyama, A., Shimoyama, K., Fujii, K.: New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. Jpn. Soc. Aeronaut. Space Sci. Trans. 50, 56–62 (2007)
Peng, C., Liu, H., Gu, F.: An evolutionary algorithm with directed weights for constrained multi-objective optimization. Appl. Soft Comput. 60, 613–622 (2017)
Ponsich, A., Jaimes, A.L., Coello, C.A.C.: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evol. Comput. 17(3), 321–344 (2013)
Ray, T., Tai, K., Seow, K.C.: Multiobjective design optimization by an evolutionary algorithm. Eng. Opt. 33(4), 399–424 (2001)
Shan, X., Li, K.: An improved two-archive evolutionary algorithm for constrained multi-objective optimization. In: Ishibuchi, H., et al. (eds.) EMO 2021. LNCS, vol. 12654, pp. 235–247. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72062-9_19
Singh, H.K., Ray, T., Smith, W.: C-PSA: Constrained Pareto simulated annealing for constrained multi-objective optimization. Inf. Sci. 180(13), 2499–2513 (2010)
Ebrahim Sorkhabi, A., Deljavan Amiri, M., Khanteymoori, A.R.: Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization. Soft. Comput. 21(24), 7251–7267 (2016). https://doi.org/10.1007/s00500-016-2422-5
Takahama, T., Sakai, S.: Efficient constrained optimization by the \(\epsilon \) constrained rank-based differential evolution. In: CEC 2012: Proceedings of the 2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)
Thurston, D.L., Srinivasan, S.: Constrained optimization for green engineering decision-making. Environ. Sci. Technol. 37(23), 5389–5397 (2003)
Tian, Y., Zhang, T., Xiao, J., Zhang, X., Jin, Y.: A coevolutionary framework for constrained multiobjective optimization problems. IEEE Trans. Evol. Comput. 25(1), 102–116 (2021)
Vargha, A., Delaney, H.D.: A critique and improvement of the CL common language effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132 (2000)
Wang, J., Li, Y., Zhang, Q., Zhang, Z., Gao, S.: Cooperative multiobjective evolutionary algorithm with propulsive population for constrained multiobjective optimization. IEEE Trans. Syst. Man Cybern.: Syst. 52, 3476–3491 (2021)
Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. Springer, New York (1945). https://doi.org/10.1007/978-1-4612-4380-9_16
Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint handling in multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 13(3), 514–525 (2009)
Young, N.: Blended ranking to cross infeasible regions in constrained multi-objective problems. In: CIMCA 2005: Proceedings of the 2005 International Conference on Computational Intelligence Modeling, Control and Automation, pp. 191–196 (2005)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, S., Li, K., Li, W. (2022). Do We Really Need to Use Constraint Violation in Constrained Evolutionary Multi-objective Optimization?. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-14721-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14720-3
Online ISBN: 978-3-031-14721-0
eBook Packages: Computer ScienceComputer Science (R0)