iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-13832-4_32
A Novel Gaze Detection Method Based on Local Feature Fusion | SpringerLink
Skip to main content

A Novel Gaze Detection Method Based on Local Feature Fusion

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13395))

Included in the following conference series:

  • 1894 Accesses

Abstract

As the important research field in computer vision, gaze detection has attracted the attention of researchers. When dealing with head pose changes and incomplete head images, some existing gaze detection methods directly extract head global features and ignore some local features. Moreover, the feature extraction network neglects small objects or objects with insignificant features in the scene as the network layer deepens. Regarding the above issue, we propose a gaze detection model based on local feature fusion (Local-GazeNet). First, attention mechanisms is adopted to the scene feature extraction network for enhancing the significance of objects of interest and suppressing redundant information in the image. Secondly, a local feature extractor is employed to the gaze direction detection module, and the extracted local features are supplemented into the global features in the form of residuals, so that the model can obtain more abundant head features to deal with the complex changes of head poses. We validate the performance of the Local-GazeNet model on the GazeFollow dataset. The experimental results illustrate that our proposed method can achieve satisfactory performance and outperform some existing state-of-the art gaze detection methods.

Y. Dong—This work is supported by Science and Technology Research Project of Education Department of Jilin Province (No. JJKH20170976SK), Humanities and Social Science Research Project of Education Department of Jilin Province (No. JJH20221328SK). And Jilin Provincial Science and Technology Department Project (No. 20200401081GX).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  2. Frischen, A., Bayliss, A.P., Tipper, S.P.: Gaze cueing of attention: visual attention, social cognition, and individual differences. Psychol. Bull. 133(4), 694–724 (2007)

    Article  Google Scholar 

  3. Lian, D., Yu, Z., Gao, S.: Believe it or not, we know what you are looking at! In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 35–50. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_3

    Chapter  Google Scholar 

  4. Aung, A.M., Ramakrishnan, A., Whitehill, J.R.: Who are they Looking At? Automatic eye gaze following for classroom observation video analysis. Int. Educ. Data Mining Soc. (2018)

    Google Scholar 

  5. Ghosh, S., Dhall, A., Hayat, M., Knibbe, J., Ji, Q.: Automatic gaze analysis: a survey of deep learning based approaches. arXiv preprint arXiv:2108.05479 (2021)

  6. Corcoran, P.M., Nanu, F., Petrescu, S., Bigioi, P.: Real-time eye gaze tracking for gaming design and consumer electronics systems. IEEE Trans. Consum. Electron. 58(2), 347–355 (2012)

    Article  Google Scholar 

  7. Xia, D., Ruan, Z.: IR Image based eye gaze estimation. In: Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007), vol. 1, pp. 220–224. IEEE Computer Society (2007)

    Google Scholar 

  8. Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5396–5406 (2020)

    Google Scholar 

  9. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: It’s written all over your face: full-face appearance-based gaze estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–60 (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolution-al neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  12. Hou, Q., Zhou, D., Feng J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13713–13722 (2021)

    Google Scholar 

  13. Lai, C.C., Shih, S.W., Hung, Y.P.: Hybrid method for 3-D gaze tracking using glint and contour features. IEEE Trans. Circuits Syst. Video Technol. 25(1), 24–37 (2014)

    Article  Google Scholar 

  14. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2879–2886(2012)

    Google Scholar 

  15. Sugano, Y., Matsushita, Y., Sato, Y.: Appearance-based gaze estimation using visual saliency. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 329–341 (2012)

    Article  Google Scholar 

  16. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4511–4520 (2015)

    Google Scholar 

  17. Gorji, S., Clark, J.J.: Attentional push: a deep convolutional network for augmenting image salience with shared attention modeling in social scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2510–2519 (2017)

    Google Scholar 

  18. Chong, E., Ruiz, N., Wang, Y., Zhang, Y., Rozga, A., Rehg, J.M.: Connecting gaze, scene, and attention: generalized attention estimation via joint modeling of gaze and scene saliency. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 397–412. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_24

    Chapter  Google Scholar 

  19. Jeong, J.E., Choi, Y.S.: Depth-enhanced gaze following method. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing, pp. 1090–1093 (2021)

    Google Scholar 

  20. Guan, J., Yin, L., Sun, J., Qi, S., Wang, X., Liao, Q.: Enhanced gaze following via object detection and human pose estimation. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 502–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_41

    Chapter  Google Scholar 

  21. Zhao, Z., Liu, Q., Zhou, F.: Robust lightweight facial expression recognition network with label distribution training. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, pp. 3510–3519 (2021)

    Google Scholar 

  22. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: BAM: Bottleneck Attention Module. In: British Machine Vision Conference (BMVC), vol. 147 (2018)

    Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  24. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, vol.1, pp. 487–495 (2014)

    Google Scholar 

  25. Funes Mora, K.A., Monay, F., Odobez, J.M.: EYEDIAP: a database for the development and evaluation of gaze estimation algorithms from RGB and RGB-D cameras. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 255–258 (2014)

    Google Scholar 

  26. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  27. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  28. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2106–2113 (2009)

    Google Scholar 

  29. Pan, J., et al.: SalGAN: Visual saliency prediction with generative adversarial networks. arXiv preprint arXiv:1701.01081 (2017)

  30. Chen, W., et al.: Gaze estimation via the joint modeling of multiple cues. IEEE Trans. Circuits Syst. Video Technol. 32, 1390–1402 (2022)

    Article  Google Scholar 

  31. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Dong, Y., Xu, H., Sun, H., Qi, M. (2022). A Novel Gaze Detection Method Based on Local Feature Fusion. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2022. Lecture Notes in Computer Science(), vol 13395. Springer, Cham. https://doi.org/10.1007/978-3-031-13832-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13832-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13831-7

  • Online ISBN: 978-3-031-13832-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics