Abstract
Graph-based data structures have drawn great attention in recent years. The large and rapidly growing trend on developing graph processing systems focuses mostly on improving the performance by preprocessing the input graph and modifying its layout. These systems usually take several hours to days to complete processing a single graph on high-end machines, let alone the overhead of pre-processing which most of the time can be dominant. Yet for most graph applications the exact answer is not always crucial, and providing a rough estimate of the final result is adequate. Approximate computing is introduced to trade off accuracy of results for computation or energy savings that could not be achieved by conventional techniques alone. In this work, we design, implement and evaluate GraphGuess, inspired from the domain of approximate graph theory and extend it to a general, practical graph processing system. GraphGuess is essentially an approximate graph processing technique with adaptive correction, which can be implemented on top of any graph processing system. We build a vertex-centric processing system based on GraphGuess, where it allows the user to trade off accuracy for better performance. Our experimental studies show that using GraphGuess can significantly reduce the processing time for large scale graphs while maintaining high accuracy .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abraham, I., Durfee, D., Koutis, I., Krinninger, S., Peng, R.: On fully dynamic graph sparsifiers. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 335–344. IEEE (2016). https://doi.org/10.1109/FOCS.2016.44
Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K.: A scalable processing-in-memory accelerator for parallel graph processing. ACM SIGARCH Comput. Archit. News 43(3), 105–117 (2016). https://doi.org/10.1145/2749469.2750386
Bernstein, A., et al.: Fully-dynamic graph sparsifiers against an adaptive adversary. arXiv preprint arXiv:2004.08432 (2020)
Besta, M., et al.: Slim graph: practical lossy graph compression for approximate graph processing, storage, and analytics. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–25 (2019). https://doi.org/10.1145/3295500.3356182
Capelli, L.A., Hu, Z., Zakian, T.A.: iPregel: a combiner-based in-memory shared memory vertex-centric framework. In: Proceedings of the 47th International Conference on Parallel Processing Companion, pp. 1–10 (2018). https://doi.org/10.1145/3229710.3229719
Ching, A.: Giraph: production-grade graph processing infrastructure for trillion edge graphs. ATPESC, ser. ATPESC 14 (2014)
Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed graph-parallel computation on natural graphs. In: OSDI, p. 2 (2012)
Heidarshenas, A., Yesil, S., Skarlatos, D., Misailovic, S., Morrison, A., Torrellas, J.: V-Combiner: speeding-up iterative graph processing on a shared-memory platform with vertex merging. In: Proceedings of the 34th ACM International Conference on Supercomputing, pp. 1–13 (2020). https://doi.org/10.1145/3392717.3392739
Iyer, A.P., Liu, Z., Jin, X., Venkataraman, S., Braverman, V., Stoica, I.: \(\{\)ASAP\(\}\): Fast, approximate graph pattern mining at scale. In: 13th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 18), pp. 745–761 (2018)
Iyer, A.P., et al.: Bridging the gap: towards approximate graph analytics. In: Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), p. 10. ACM (2018). https://doi.org/10.1145/3210259.3210269
Jevdjic, D., Strauss, K., Ceze, L., Malvar, H.S.: Approximate storage of compressed and encrypted videos. ACM SIGOPS Operat. Syst. Rev. 51(2), 361–373 (2017). https://doi.org/10.1145/3037697.3037718
Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Optimistic parallelism requires abstractions. ACM SIGPLAN Notices 42(6), 211–222 (2007). https://doi.org/10.1145/1250734.1250759
Kyrola, A., Blelloch, G.E., Guestrin, C.: GraphChi: large-scale graph computation on just a pc. In: 11th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 12). USENIX (2012)
Low, Y., Gonzalez, J.E., Kyrola, A., Bickson, D., Guestrin, C.E., Hellerstein, J.: GraphLab: a new framework for parallel machine learning. arXiv preprint arXiv:1408.2041 (2014)
Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 135–146. ACM (2010). https://doi.org/10.1145/1807167.1807184
McSherry, F., Isard, M., Murray, D.G.: Scalability! but at what cost? In: HotOS, vol. 15, p. 14. Citeseer (2015)
Mitliagkas, I., Borokhovich, M., Dimakis, A.G., Caramanis, C.: Frogwild!-fast pagerank approximations on graph engines. arXiv preprint arXiv:1502.04281 (2015)
Mukkara, A., Beckmann, N., Abeydeera, M., Ma, X., Sanchez, D.: Exploiting locality in graph analytics through hardware-accelerated traversal scheduling. In: 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 1–14. IEEE (2018). https://doi.org/10.1109/MICRO.2018.00010
Nai, L., Xia, Y., Tanase, I.G., Kim, H., Lin, C.Y.: GraphBIG: understanding graph computing in the context of industrial solutions. In: 2015 SC-International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–12. IEEE (2015). https://doi.org/10.1145/2807591.2807626
Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 456–471. ACM (2013). https://doi.org/10.1145/2517349.2522739
Qiao, M., Cheng, H., Chang, L., Yu, J.X.: Approximate shortest distance computing: a query-dependent local landmark scheme. IEEE Trans. Knowl. Data Eng. 26(1), 55–68 (2012). https://doi.org/10.1109/ICDE.2012.53
Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing using streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 472–488. ACM (2013). https://doi.org/10.1145/2517349.2522740
Sarlós, T., Benczúr, A.A., Csalogány, K., Fogaras, D., Rácz, B.: To randomize or not to randomize: space optimal summaries for hyperlink analysis. In: Proceedings of the 15th International Conference on World Wide Web, pp. 297–306 (2006)
Shang, Z., Yu, J.X.: Auto-approximation of graph computing. In: Proceedings of the VLDB Endowment 7(14), 1833–1844 (2014). https://doi.org/10.14778/2733085.2733090
Shin, K., Ghoting, A., Kim, M., Raghavan, H.: SWeG: lossless and lossy summarization of web-scale graphs. In: The World Wide Web Conference, pp. 1679–1690 (2019). https://doi.org/10.1145/3308558.3313402
Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM J. Comput. 40(6), 1913–1926 (2011). https://doi.org/10.1137/080734029
Spielman, D.A., Teng, S.H.: Spectral sparsification of graphs. SIAM J. Comput. 40(4), 981–1025 (2011). https://doi.org/10.1137/08074489X
Sundaram, N., et al.: GraphMat: high performance graph analytics made productive. In: Proceedings of the VLDB Endowment, vol. 8(11), 1214–1225 (2015). https://doi.org/10.14778/2809974.2809983
Yuhanna, N., Evelson, B., Hopkins, B., Jedinak, E.: Techradar: enterprise dbms, q1 2014 (2013). https://www.forrester.com/report/TechRadar+Enterprise+DBMS+Q1+2014/-/E-RES106801
Acknowledgements
This work was supported in part by CRISP, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA and NSF grants 1909004, 1714389, 1912495, 1629915, 1629129, 1763681.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Ramezani, M., Kandemir, M.T., Sivasubramaniam, A. (2022). GraphGuess: Approximate Graph Processing System with Adaptive Correction. In: Cano, J., Trinder, P. (eds) Euro-Par 2022: Parallel Processing. Euro-Par 2022. Lecture Notes in Computer Science, vol 13440. Springer, Cham. https://doi.org/10.1007/978-3-031-12597-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-12597-3_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12596-6
Online ISBN: 978-3-031-12597-3
eBook Packages: Computer ScienceComputer Science (R0)