iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-09640-2_15
Preserving the Privacy and Cybersecurity of Home Energy Data | SpringerLink
Skip to main content

Preserving the Privacy and Cybersecurity of Home Energy Data

  • Chapter
  • First Online:
Emerging Trends in Cybersecurity Applications

Abstract

The field of energy data presents many opportunities for applying the principles of privacy and cybersecurity. In this chapter, we focus on home electricity data and the possible use and misuse of this data for attacks and corresponding protection mechanisms. If an attacker can deduce sufficiently precise information about a house location and its occupancy at given times, this may present a physical security threat.

We review previous literature in this area. We then obtain hourly solar generation data from over 2300 houses and develop an attack to identify the location of the houses using historical weather data. We discuss common use cases of home energy data and suggest defences against the proposed attack using privacy and cryptographic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Australian Government Clean Energy Regulator, Small-scale renewable energy scheme (2018). http://www.cleanenergyregulator.gov.au/RET/About-the-Renewable-Energy-Target/How-the-scheme-works/Small-scale-Renewable-Energy-Scheme. [Retrieved: December, 2021]

  2. R. Best, P.J. Burke, S. Nishitateno, Understanding the determinants of rooftop solar installation: evidence from household surveys in Australia. Aust. J. Agric. Resour. Econ. 63(4), 922–939 (2019)

    Article  Google Scholar 

  3. Australian Energy Market Commission, Five minute settlement (2021). https://www.aemc.gov.au/rule-changes/five-minute-settlement. [Retrieved: December, 2021]

  4. A.S. Spanias, Solar energy management as an internet of things (iot) application, in 2017 8th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, 2017), pp. 1–4

    Google Scholar 

  5. D. Syed, H. Abu-Rub, A. Ghrayeb, S.S. Refaat, M. Houchati, O. Bouhali, S. Bañales, Deep learning-based short-term load forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access 9, 54992–55008 (2021)

    Article  Google Scholar 

  6. Australia Energy Market Operator, Solar and wind energy forecasting (2016). http://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Planning-and-forecasting/Solar-and-wind-energy-forecasting. [Retrieved: December, 2021]

  7. R. Razavi, A. Gharipour, M. Fleury, I.J. Akpan, Occupancy detection of residential buildings using smart meter data: A large-scale study. Energy Buildings 183, 195–208 (2019)

    Article  Google Scholar 

  8. Australian Photovoltaic Institute, Mapping Australian photovoltaic installations (2021). https://pv-map.apvi.org.au/historical. [Retrieved: December, 2021]

  9. I. Yilmaz, A. Siraj, Avoiding occupancy detection from smart meter using adversarial machine learning. IEEE Access 9, 35411–35430 (2021)

    Article  Google Scholar 

  10. D. Chen, D. Irwin, Weatherman: Exposing weather-based privacy threats in big energy data, in 2017 IEEE International Conference on Big Data (Big Data) (IEEE, 2017), pp. 1079–1086

    Google Scholar 

  11. D. Chen, S. Iyengar, D. Irwin, P. Shenoy, Sunspot: Exposing the location of anonymous solar-powered homes, in Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments, pp. 85–94 (2016)

    Google Scholar 

  12. B. Raoult, C. Bergeron, A.L. Alós, J.-N. Thépaut, D. Dee, Climate service develops user-friendly data store. ECMWF Newsletter 151, 22–27 (2017)

    Google Scholar 

  13. W.F. Holmgren, C.W. Hansen, M.A. Mikofski, pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 3(29), 884 (2018)

    Google Scholar 

  14. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, et al., The era5 global reanalysis. Q. J. Roy. Meteorol. Soc. 146(730), 1999–2049 (2020)

    Article  Google Scholar 

  15. L.R. Camargo, J. Schmidt, Simulation of long-term time series of solar photovoltaic power: is the era5-land reanalysis the next big step? Preprint (2020). arXiv:2003.04131

    Google Scholar 

  16. A.K. Yadav, S. Chandel, Tilt angle optimization to maximize incident solar radiation: A review. Renew. Sustain. Energy Rev. 23, 503–513 (2013)

    Article  Google Scholar 

  17. M.A. Will, R.K. Ko, A guide to homomorphic encryption, in The Cloud Security Ecosystem, ed. by R. Ko, K.-K. R. Choo (Syngress, Boston, 2015), pp. 101–127

    Chapter  Google Scholar 

  18. M.A. Will, B. Nicholson, M. Tiehuis, R.K. Ko, Secure voting in the cloud using homomorphic encryption and mobile agents, in 2015 International Conference on Cloud Computing Research and Innovation (ICCCRI), pp. 173–184 (2015)

    Google Scholar 

  19. M.A. Will, R.K. Ko, I.H. Witten, Privacy preserving computation by fragmenting individual bits and distributing gates, in 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 900–908 (2016)

    Google Scholar 

  20. Y. Zhang, G. Bai, X. Li, C. Curtis, C. Chen, R.K.L. Ko, Privcoll: Practical privacy-preserving collaborative machine learning, in Computer Security – ESORICS 2020, ed. by L. Chen, N. Li, K. Liang, S. Schneider (Springer International Publishing, Cham, 2020), pp. 399–418

    Chapter  Google Scholar 

  21. Y. Zhang, G. Bai, X. Li, C. Curtis, C. Chen, R.K.L. Ko, Privacy-preserving gradient descent for distributed genome-wide analysis, in Computer Security – ESORICS 2021, ed. by E. Bertino, H. Shulman, M. Waidner (Springer International Publishing, Cham, 2021), pp. 395–416

    Chapter  Google Scholar 

  22. C. Dwork, Differential privacy: A survey of results, in International Conference on Theory and Applications of Models of Computation (Springer, 2008), pp. 1–19

    Google Scholar 

  23. M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, L. Zhang, Deep learning with differential privacy, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  24. C. Dwork, F. McSherry, K. Nissim, A. Smith, Calibrating noise to sensitivity in private data analysis, in Theory of Cryptography Conference (Springer, 2006), pp. 265–284

    Google Scholar 

  25. F. McSherry, K. Talwar, Mechanism design via differential privacy, in 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07) (IEEE, 2007), pp. 94–103

    Google Scholar 

  26. T. Zhu, G. Li, W. Zhou, S.Y. Philip, Differentially private data publishing and analysis: A survey. IEEE Trans. Knowl. Data Eng. 29(8), 1619–1638 (2017)

    Article  Google Scholar 

  27. Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Google Scholar 

  28. P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis, A.N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al., Advances and open problems in federated learning. Preprint (2019). arXiv:1912.04977

    Google Scholar 

  29. B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. y. Arcas, Communication-efficient learning of deep networks from decentralized data, in Artificial Intelligence and Statistics (PMLR, 2017), pp. 1273–1282

    Google Scholar 

  30. A. Acar, H. Aksu, A.S. Uluagac, M. Conti, A survey on homomorphic encryption schemes: Theory and implementation. ACM Comput. Surv. (CSUR) 51(4), 1–35 (2018)

    Google Scholar 

  31. K. Abdulla, J. De Hoog, V. Muenzel, F. Suits, K. Steer, A. Wirth, S. Halgamuge, Optimal operation of energy storage systems considering forecasts and battery degradation. IEEE Trans. Smart Grid 9(3), 2086–2096 (2016)

    Article  Google Scholar 

  32. B.O. Bilal, V. Sambou, P. Ndiaye, C. Kébé, M. Ndongo, Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP). Renewable Energy 35(10), 2388–2390 (2010)

    Article  Google Scholar 

  33. B.S. Borowy, Z.M. Salameh, Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans. Energy Convers. 11(2), 367–375 (1996)

    Article  Google Scholar 

  34. R. Bean, H. Khan, Using solar and load predictions in battery scheduling at the residential level, in Proceedings of the 8th Solar Integration Workshop, Stockholm 2018 (2018)

    Google Scholar 

  35. L. Zhu, S. Han, Deep leakage from gradients, in Federated Learning (Springer, 2020), pp. 17–31

    Google Scholar 

  36. V. Shejwalkar, A. Houmansadr, Manipulating the byzantine: Optimizing model poisoning attacks and defenses for federated learning. Internet Society, 18 (2021)

    Google Scholar 

  37. K. Wei, J. Li, M. Ding, C. Ma, H.H. Yang, F. Farokhi, S. Jin, T.Q. Quek, H.V. Poor, Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469 (2020)

    Article  Google Scholar 

  38. R. Gelaro, W. McCarty, M.J. Suárez, R. Todling, A. Molod, L. Takacs, C.A. Randles, A. Darmenov, M.G. Bosilovich, R. Reichle, et al., The modern-era retrospective analysis for research and applications, version 2 (merra-2). J. Climate 30(14), 5419–5454 (2017)

    Article  Google Scholar 

  39. C. Dwork, A. Roth, et al., The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3-4), 211–407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bean, R., Zhang, Y., Ko, R.K. ., Mao, X., Bai, G. (2023). Preserving the Privacy and Cybersecurity of Home Energy Data. In: Daimi, K., Alsadoon, A., Peoples, C., El Madhoun, N. (eds) Emerging Trends in Cybersecurity Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-09640-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09640-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09639-6

  • Online ISBN: 978-3-031-09640-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics