Abstract
This paper presents an Intelligent Decision Support System (IDSS) to enhance the management of Analytical Laboratories (AL) of a company operating in the chemical industry. This IDSS incorporates two predictive Machine Learning (ML) models, related with the prediction of the arrival of samples at the AL and the consumption of AL materials, which are then used to perform prescriptive analytics for AL instrument allocation tasks. The IDSS is also complemented with descriptive analytics of instrument similarities regarding the tests performed for better supporting the AL manager decisions. The IDSS includes interactive dashboards and it was successfully validated by the AL managers using the Technology Acceptance Model (TAM) 3 and open interviews, which resulted in a positive feedback.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aiello, S., Eckstrand, E., Fu, A., Landry, M., Aboyoun, P.: Machine learning with r and h2o. In: H2O Booklet (2016)
Arnott, D., Pervan, G.: A critical analysis of decision support systems research revisited: the rise of design science. J. Inf. Technol. 29(4), 269–293 (2014). https://doi.org/10.1057/jit.2014.16
Bellini, P., Cenni, D., Mitolo, N., Nesi, P., Pantaleo, G., Soderi, M.: High level control of chemical plant by industry 4.0 solutions. J. Indust. Inf. Integrat. 26, 100276 (2022). https://doi.org/10.1016/j.jii.2021.100276
Chang, W., et al.: Shiny: Web Application Framework for R. r package version 1.7.1 (2021). https://CRAN.R-project.org/package=shiny
Chiu, Y.C., Cheng, F.T., Huang, H.C.: Developing a factory-wide intelligent predictive maintenance system based on industry 4.0. J. Chinese Inst. Eng. 40(7), 562–571 (2017). https://doi.org/10.1080/02533839.2017.1362357
Cortez, P.: Modern Optimization with R. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08263-9
Darwish, A.: Business Process Mapping: A Guide to Best Practice. Writescope Publishers (2011)
Ferré, J.: 3.02 - regression diagnostics. In: Brown, S.D., Tauler, R., Walczak, B. (eds.) Comprehensive Chemometrics, pp. 33–89. Elsevier, Oxford (2009). https://doi.org/10.1016/B978-044452701-1.00076-4
Hyndman, R., et al.: Forecast: Forecasting Functions for Time Series and Linear Models. r package version 8.13 (2020). https://pkg.robjhyndman.com/forecast/
Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Statist. Softw. 26(3), 1–22 (2008)
Kabugo, J.C., Jämsä-Jounela, S.L., Schiemann, R., Binder, C.: Industry 4.0 based process data analytics platform: a waste-to-energy plant case study. Int. J. Electric. Power Energy Syst. 115, 105508 (2020). https://doi.org/10.1016/j.ijepes.2019.105508
Mahmoodpour, M., Lobov, A., Lanz, M., Mäkelä, P., Rundas, N.: Role-based visualization of industrial iot-based systems. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–8 (2018). https://doi.org/10.1109/MESA.2018.8449183
Michalewicz, Z., Michalewicz, M.: Machine intelligence, adaptive business intelligence, and natural intelligence [research frontier]. IEEE Comput. Intell. Mag. 3(1), 54–63 (2008). https://doi.org/10.1109/MCI.2007.913389
Neuböck, T., Schrefl, M.: Modelling knowledge about data analysis processes in manufacturing. IFAC-PapersOnLine 48(3), 277–282 (2015). https://doi.org/10.1016/j.ifacol.2015.06.094
Niño, M., Blanco, J.M., Illarramendi, A.: Business understanding, challenges and issues of big data analytics for the servitization of a capital equipment manufacturer. In: IEEE International Conference on Big Data (Big Data), pp. 1368–1377 (2015). https://doi.org/10.1109/BigData.2015.7363897
R Development Core Team. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria (2008). http://www.R-project.org, ISBN 3-900051-07-0
Silva, A.J., Cortez, P.: An automated machine learning approach for predicting chemical laboratory material consumption. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds.) AIAI 2021. IAICT, vol. 627, pp. 105–116. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79150-6_9
Silva, A.J., Cortez, P., Pilastri, A.: Chemical laboratories 4.0: a two-stage machine learning system for predicting the arrival of samples. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) AIAI 2020. IAICT, vol. 584, pp. 232–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49186-4_20
Silva, A.J., Cortez, P., Pereira, C., Pilastri, A.: Business analytics in industry 4.0: a systematic review. Exp. Syst. 38(7), e12741 (2021). https://doi.org/10.1111/exsy.12741
Silva, N., et al.: Advancing logistics 4.0 with the implementation of a big data warehouse: a demonstration case for the automotive industry. Electronics 10(18) (2021). https://doi.org/10.3390/electronics10182221
Tran, M.Q., Elsisi, M., Mahmoud, K., Liu, M.K., Lehtonen, M., Darwish, M.M.F.: Experimental setup for online fault diagnosis of induction machines via promising iot and machine learning: towards industry 4.0 empowerment. IEEE Access 9, 115429–115441 (2021). https://doi.org/10.1109/ACCESS.2021.3105297
Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39(2), 273–315 (2008). https://doi.org/10.1111/j.1540-5915.2008.00192.x
Acknowledgments
This work has been supported by FCT – Fundação para a Ciência e a Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. The authors also wish to thank the chemical company staff involved with this project for providing the data and also the valuable domain feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Silva, A.J., Cortez, P. (2022). An Industry 4.0 Intelligent Decision Support System for Analytical Laboratories. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-031-08337-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-08337-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08336-5
Online ISBN: 978-3-031-08337-2
eBook Packages: Computer ScienceComputer Science (R0)