iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-07802-6_32
Feature Density as an Uncertainty Estimator Method in the Binary Classification Mammography Images Task for a Supervised Deep Learning Model | SpringerLink
Skip to main content

Feature Density as an Uncertainty Estimator Method in the Binary Classification Mammography Images Task for a Supervised Deep Learning Model

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

Labeled medical datasets may include a limited number of observations for each class, while unlabeled datasets may include observations from patients with pathologies other than those observed in the labeled dataset. This negatively influences the performance of the prediction algorithms. Including out-of-distribution data in the unlabeled dataset can lead to varying degrees of performance degradation, or even improvement, by using a distance to measure how out-of-distribution a piece of data is. This work aims to propose an approach that allows estimating the predictive uncertainty of supervised algorithms, improving the behaviour when atypical samples are presented to the distribution of the dataset. In particular, we have used this approach to mammograms X-ray images applied to binary classification tasks. The proposal makes use of Feature Density, which consists of estimating the density of features from the calculation of a histogram. The obtained results report slight differences when different neural network architectures and uncertainty estimators are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Calderon-Ramirez, S., et al.: Improving uncertainty estimation with semi-supervised deep learning for Covid-19 detection using chest x-ray images. IEEE Access 9, 85, 442–485 (2021)

    Google Scholar 

  2. Calderon-Ramirez, S., et al.: Dealing with scarce labelled data: semi-supervised deep learning with mix match for Covid-19 detection using chest x-ray images. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5294–5301. IEEE (2021)

    Google Scholar 

  3. Wild, C., Weiderpass, E., Stewart, B.: World cancer report: cancer research for cancer prevention. International Agency for Research on Cancer, Lyon, France (2020)

    Google Scholar 

  4. A. C. Society: Breast Cancer Facts & Figures 2019–2020. American Cancer Society, Atlanta (2019)

    Google Scholar 

  5. Molina-Cabello, M.A., Accino, C., López-Rubio, E., Thurnhofer-Hemsi, K.: Optimization of convolutional neural network ensemble classifiers by genetic algorithms. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 163–173. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_14

    Chapter  Google Scholar 

  6. Molina-Cabello, M.A., Rodríguez-Rodríguez, J.A., Thurnhofer-Hemsi, K., López-Rubio, E.: Histopathological image analysis for breast cancer diagnosis by ensembles of convolutional neural networks and genetic algorithms. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  7. Calderon-Ramirez, S., et al.: Correcting data imbalance for semi-supervised Covid-19 detection using x-ray chest images. Appl. Soft Comput. 111, 107692 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ramírez, S.C., Murillo-Hernández, D., Rojas-Salazar, K., Elizondo, D., Moemeni, A., Molina-Cabello, M.A.: A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica. Med. Biol. Eng. Comput. (2022)

    Google Scholar 

  9. Calderon-Ramirez, S., et al.: Mixmood: a systematic approach to class distribution mismatch in semi-supervised learning using deep dataset dissimilarity measures. arXiv preprint arXiv:2006.07767 (2020)

  10. Calderon-Ramirez, S., Yang, S., Elizondo, D., Moemeni, A.: Dealing with distribution mismatch in semi-supervised deep learning for Covid-19 detection using chest x-ray images: a novel approach using feature densities. arXiv preprint arXiv:2109.00889 (2021)

  11. Sun, W., Tseng, B., Zhang, J., Qian, W.: Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph. (2016)

    Google Scholar 

  12. Tardy, M., Scheffer, B., Mateus, D.: Uncertainty Measurements for the Reliable Classification of Mammograms. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 495–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_55

    Chapter  Google Scholar 

  13. Jøsang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty. International Series of Monographs on Physics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42337-1

  14. Denouden, T., Salay, R., Czarnecki, K., Abdelzad, V., Phan, B., Vernekar, S.: Improving reconstruction autoencoder out-of-distribution detection with Mahalanobis distance. CoRR, vol. abs/1812.02765 (2018). http://arxiv.org/abs/1812.02765

  15. Calderón-Ramírez, S., et al: Improving uncertainty estimations for mammogram classification using semi-supervised learning. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  16. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning (2016)

    Google Scholar 

  17. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  PubMed  Google Scholar 

  18. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4 (2017)

    Google Scholar 

  19. Beeravolu, A.R., Azam, S., Jonkman, M., Shanmugam, B., Kannoorpatti, K., Anwar, A.: Preprocessing of breast cancer images to create datasets for deep-CNN. IEEE Access 9, 438–463 (2021)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the following Spanish grants RTI2018-094645-B-I00 and UMA18-FEDERJA-084. All of them include funds from the European Regional Development Fund (ERDF). The authors acknowledge the computer resources, technical expertise and assistance provided by the SCBI (Supercomputing and Bioinformatics) center of the University of Malaga. The authors acknowledge the funding from the Instituto de Investigación Biomédica de Málaga - IBIMA and the Universidad de Málaga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Molina-Cabello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuentes-Fino, R.J., Calderón-Ramírez, S., Domínguez, E., López-Rubio, E., Hernandez-Vasquez, M.A., Molina-Cabello, M.A. (2022). Feature Density as an Uncertainty Estimator Method in the Binary Classification Mammography Images Task for a Supervised Deep Learning Model. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics