iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-031-06220-9_11
Sorting by k-Cuts on Signed Permutations | SpringerLink
Skip to main content

Sorting by k-Cuts on Signed Permutations

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2022)

Abstract

Sorting by Genome Rearrangements is a classic problem in Computational Biology. Several models have been considered so far, each of them defines how a genome is modeled (for example, permutations when assuming no duplicated genes, strings if duplicated genes are allowed, and/or use of signs on each element when gene orientation is known), and which rearrangements are allowed. Recently, a new problem, called Sorting by Multi-Cut Rearrangements, was proposed. It uses the k-Cut rearrangement which cuts a permutation (or a string) at \(k \ge 2\) places and rearranges the generated blocks to obtain a new permutation (or string) of same size. This new rearrangement may model chromoanagenesis, a phenomenon consisting of massive simultaneous rearrangements. Similarly as the Double-Cut-and-Join, this new rearrangement also generalizes several genome rearrangements such as reversals, transpositions, revrevs, transreversals, and block-interchanges. In this paper, we extend a previous work based on unsigned permutations and strings to signed permutations. We show the complexity of this problem for different values of k, that the approximation algorithm proposed for unsigned permutations with any value of k can be adapted to signed permutations, and a 1.5-approximation algorithm for the specific case \(k=4\).

This work was supported by the National Council of Technological and Scientific Development, CNPq (grants 425340/2016-3 and 202292/2020-7), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and the São Paulo Research Foundation, FAPESP (grants 2013/08293-7, 2015/11937-9, and 2019/27331-3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseyev, M.A.: Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes. J. Comput. Biol. 15(8), 1117–1131 (2008). https://doi.org/10.1089/cmb.2008.0080

    Article  MathSciNet  Google Scholar 

  2. Alekseyev, M.A., Pevzner, P.A.: Multi-break rearrangements and chromosomal evolution. Theor. Compu. Sci. 395(2–3), 193–202 (2008). https://doi.org/10.1016/j.tcs.2008.01.013

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: On the complexity of some variations of sorting by transpositions. J. Univ. Comput. Sci. 26(9), 1076–1094 (2020). https://doi.org/10.3897/jucs.2020.057

    Article  Google Scholar 

  4. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2), 224–240 (1998). https://doi.org/10.1137/S089548019528280X

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Appl. Math. 146(2), 134–145 (2005). https://doi.org/10.1016/j.dam.2004.04.010

    Article  MathSciNet  MATH  Google Scholar 

  6. Bulteau, L., Fertin, G., Jean, G., Komusiewicz, C.: Sorting by multi-cut rearrangements. Algorithms 14(6), 169 (2021). https://doi.org/10.3390/a14060169

  7. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J. Discrete Math. 26(3), 1148–1180 (2012). https://doi.org/10.1137/110851390

    Article  MathSciNet  MATH  Google Scholar 

  8. Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60(4), 165–169 (1996). https://doi.org/10.1016/S0020-0190(96)00155-X

    Article  MathSciNet  MATH  Google Scholar 

  9. Elias, I., Hartman, T.: A 1.375-Approximation algorithm for sorting by transpositions. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 369–379 (2006). https://doi.org/10.1109/TCBB.2006.44

  10. Fertin, G., Labarre, A., Rusu, I., Tannier, É., Vialette, S.: Combinatorics Of Genome Rearrangements. Computational Molecular Biology, The MIT Press, London (2009). https://doi.org/10.7551/mitpress/9780262062824.001.0001

  11. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999). https://doi.org/10.1145/300515.300516

    Article  MathSciNet  MATH  Google Scholar 

  12. Holland, A.J., Cleveland, D.W.: Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 18(11), 1630–1638 (2012). https://doi.org/10.1038/nm.2988

    Article  Google Scholar 

  13. Lin, G.H., Xue, G.: Signed genome rearrangement by reversals and transpositions: models and approximations. Theor. Comput. Sci. 259(1–2), 513–531 (2001). https://doi.org/10.1016/S0304-3975(00)00038-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Pellestor, F., Gatinois, V.: Chromoanagenesis: a piece of the macroevolution scenario. Mol. Cytogenet. 13(1), 1–9 (2020). https://doi.org/10.1186/s13039-020-0470-0

    Article  Google Scholar 

  15. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation. Inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005). https://doi.org/10.1093/bioinformatics/bti535

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Rodrigues Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues Oliveira, A., Oliveira Alexandrino, A., Jean, G., Fertin, G., Dias, U., Dias, Z. (2022). Sorting by k-Cuts on Signed Permutations. In: Jin, L., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2022. Lecture Notes in Computer Science(), vol 13234. Springer, Cham. https://doi.org/10.1007/978-3-031-06220-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06220-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06219-3

  • Online ISBN: 978-3-031-06220-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics