Abstract
Planar graphs can be represented as intersection graphs of different types of geometric objects in the plane, e.g., circles (Koebe, 1936), line segments (Chalopin & Gonçalves, SODA 2009), L-shapes (Gonçalves et al., SODA 2018). For general graphs, however, even deciding whether such representations exist is often \(\mathsf{NP}\)-hard. We consider apex graphs, i.e., graphs that can be made planar by removing one vertex from them. We show, somewhat surprisingly, that deciding whether geometric representations exist for apex graphs is \(\mathsf{NP}\)-hard.
More precisely, we show that for every positive integer g, recognizing every graph class \(\mathscr {G}\) such that \({\textsc {Pure}}\text {-}{\textsc {2}}\text {-}{\textsc {Dir}}\subseteq \mathscr {G}\subseteq {\textsc {1}}\text {-}{\textsc {String}}\) is \(\mathsf{NP}\)-hard, even if the inputs are apex graphs of girth at least g. Here, \({\textsc {Pure}}\text {-}{\textsc {2}}\text {-}{\textsc {Dir}}\) is the class of intersection graphs of axis-parallel line segments (where intersections are allowed only between horizontal and vertical segments), and \({\textsc {1}}\text {-}{\textsc {String}}\) is the class of intersection graphs of simple curves (where two curves cross at most once) in the plane. This partially answers an open question raised by Kratochvíl & Pergel (COCOON, 2007).
Most known \(\textsf {NP}\)-hardness reductions for these problems are from variants of 3-SAT. We reduce from the Planar Hamiltonian Path Completion problem, which uses the more intuitive notion of planarity. As a result, our proof is much simpler and encapsulates several classes of geometric graphs.
D. Chakraborty—This work was done when the author was a postdoctoral fellow at the Indian Institute of Science, Bangalore.
K. Gajjar—This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 682203-ERC-[Inf-Speed-Tradeoff].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For a set of geometric objects \(\mathscr {C}\), its intersection graph, \(I(\mathscr {C})\), has \(\mathscr {C}\) as the vertex set and two vertices are adjacent if and only if the corresponding geometric objects intersect.
- 2.
Formally, two closed disks are said to touch each other if they share exactly one point.
- 3.
Formally, a simple curve is a subset of the plane which is homeomorphic to the interval [0, 1].
References
Agarwal, P.K., Van Kreveld, M.J.: Label placement by maximum independent set in rectangles. Comput. Geom. 11(3–4), 209–218 (1998)
Andreev, E.M.: On convex polyhedra in Lobacevskii spaces. Math. USSR-Sbornik 10(3), 413 (1970)
Auer, C., Gleißner, A.: Characterizations of deque and queue graphs. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 35–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25870-1_5
Benzer, S.: On the topology of the genetic fine structure. Proc. Natl. Acad. Sci. U.S.A. 45(11), 1607 (1959)
Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser. B 27(3), 320–331 (1979)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)
Bowen, C., Durocher, S., Löffler, M., Rounds, A., Schulz, A., Tóth, C.D.: Realization of simply connected polygonal linkages and recognition of unit disk contact trees. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 447–459. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0_37
Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. 9(1–2), 3–24 (1998)
Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the plane. In: STOC, pp. 631–638 (2009)
Chalopin, J., Gonçalves, D., Ochem, P.: Planar graphs have 1-string representations. Discrete Comput. Geom. 43(3), 626–647 (2010)
Chaplick, S., Jelínek, V., Kratochvíl, J., Vyskočil, T.: Bend-bounded path intersection graphs: sausages, noodles, and waffles on a grill. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 274–285. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34611-8_28
Chmel, P.: Algorithmic aspects of intersection representations. Bachelor’s thesis (2020)
Chung, F., Leighton, F.T., Rosenberg, A.: Diogenes: a methodology for designing fault-tolerant VLSI processor arrays. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Microsystems Program Office (1983)
Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: A graph layout problem with applications to VLSI design (1984)
de Castro, N., Cobos, F.J., Dana, J.C., Márquez, A., Noy, M.: Triangle-free planar graphs as segments intersection graphs. In: Kratochvíyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 341–350. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46648-7_35
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-0515-9
Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanners for routing in mobile networks. IEEE J. Sel. Areas Commun. 23(1), 174–185 (2005)
Ga̧sieniec, L., Klasing, R., Radzik, T.: IWOCA 2020, vol. 12126. Springer, Cham (2020)
Gonçalves, D.: 3-colorable planar graphs have an intersection segment representation using 3 slopes. In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 351–363. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30786-8_27
Gonçalves, D.: Not all planar graphs are in PURE-4-DIR. J. Graph Algorithms Appl. 24(3), 293–301 (2020)
Gonçalves, D., Isenmann, L., Pennarun, C.: Planar graphs as L-intersection or L-contact graphs. In: SODA, pp. 172–184. SIAM (2018)
Gonçalves, D., Lévêque, B., Pinlou, A.: Homothetic triangle representations of planar graphs. J. Graph Algorithms Appl. 23(4), 745–753 (2019)
Gupta, A., Impagliazzo, R.: Computing planar intertwines. In: FOCS, pp. 802–811. Citeseer (1991)
Hartman, I.B., Newman, I., Ziv, R.: On grid intersection graphs. Discret. Math. 87(1), 41–52 (1991)
Klemz, B., Nöllenburg, M., Prutkin, R.: Recognizing weighted disk contact graphs. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 433–446. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0_36
Koebe, P.: Kontaktprobleme der konformen Abbildung. Hirzel (1936)
Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory Series B 52(1), 67–78 (1991)
Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discret. Appl. Math. 52(3), 233–252 (1994)
Kratochvíl, J., Matoušek, J.: NP-hardness results for intersection graphs. Comment. Math. Univ. Carol. 30(4), 761–773 (1989)
Kratochvíl, J., Matousek, J.: Intersection graphs of segments. J. Comb. Theory Ser. B 62(2), 289–315 (1994)
Kratochvíl, J., Pergel, M.: Geometric intersection graphs: do short cycles help? In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 118–128. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73545-8_14
Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad hoc networks beyond unit disk graphs. Wireless Netw. 14(5), 715–729 (2008)
Li, X.-Y.: Algorithmic, geometric and graphs issues in wireless networks. Wirel. Commun. Mob. Comput. 3(2), 119–140 (2003)
Mustaţă, I., Pergel, M.: On unit grid intersection graphs and several other intersection graph classes. Acta Math. Univ. Comenian. 88(3), 967–972 (2019)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. OUP, Oxford (2006)
Pach, J.: Why are string graphs so beautiful? In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 1–1. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0_1
Rajaraman, R.: Topology control and routing in ad hoc networks: a survey. ACM SIGACT News 33(2), 60–73 (2002)
Robertson, N., Seymour, P.D.: Graph minors XX Wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004)
Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. J. Comput. Syst. Sci. 67(2), 365–380 (2003)
Scheinerman, E.R.: Intersection Classes and Multiple Intersection Parameters of Graphs. Princeton University (1984)
Sherwani, N.A.: Algorithms for VLSI Physical Design Automation. Springer, New York (2007)
Sinden, F.W.: Topology of thin film RC circuits. Bell Syst. Tech. J. 45(9), 1639–1662 (1966)
Thilikos, D.M., Bodlaender, H.L.: Fast partitioning l-apex graphs with applications to approximating maximum induced-subgraph problems. Inf. Process. Lett. 61(5), 227–232 (1997)
Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory Ser. B 40(1), 9–20 (1986)
Thurston, W.: Hyperbolic geometry and 3-manifolds. Low-dimensional topology (Bangor, 1979) 48, 9–25 (1982)
Welsh, D.J.A.: Knots and braids: some algorithmic questions. Contemp. Math. 147 (1993)
Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal planar graphs. Technical report, EECS 198, Princeton University, USA (1982)
Xu, J., Berger, B.: Fast and accurate algorithms for protein side-chain packing. J. ACM (JACM) 53(4), 533–557 (2006)
Acknowledgements
This work was done when Kshitij Gajjar was a postdoctoral researcher at Technion, Israel. Kshitij Gajjar’s work is partially supported by NUS ODPRT Grant, WBS No. R-252-000-A94-133. Both authors thank the organisers of Graphmasters 2020 [18] for providing the virtual environment that initiated this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Chakraborty, D., Gajjar, K. (2022). Finding Geometric Representations of Apex Graphs is NP-Hard. In: Mutzel, P., Rahman, M.S., Slamin (eds) WALCOM: Algorithms and Computation. WALCOM 2022. Lecture Notes in Computer Science(), vol 13174. Springer, Cham. https://doi.org/10.1007/978-3-030-96731-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-96731-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96730-7
Online ISBN: 978-3-030-96731-4
eBook Packages: Computer ScienceComputer Science (R0)