iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-90888-1_44
An Efficient Approach for Spatial Trajectory Anonymization | SpringerLink
Skip to main content

An Efficient Approach for Spatial Trajectory Anonymization

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2021 (WISE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13080))

Included in the following conference series:

Abstract

Spatial trajectories are being extensively collected and utilized nowadays. When publishing trajectory datasets that contain identifiable information about individuals, it is critically important to protect user privacy against linking attack. Although k-anonymity has been proven as a powerful tool to tackle trajectory re-identification, there still exists a significant gap in model efficiency, which severely impacts the feasibility of existing approaches for large-scale trajectory data. In this paper, we propose Gindex, a highly scalable solution for trajectory k-anonymization. It utilizes a hierarchical grid index and various optimization techniques to speed up k-clustering and trajectory merging. Extensive experiments on a real-life trajectory dataset verify the efficiency and scalability of Gindex which outperforms existing k-anonymity models by several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abul, O., Bonchi, F., Nanni, M.: Never walk alone: Uncertainty for anonymity in moving objects databases. In: ICDE, pp. 376–385 (2008)

    Google Scholar 

  2. Abul, O., Bonchi, F., Nanni, M.: Anonymization of moving objects databases by clustering and perturbation. Inf. Syst. 35(8), 884–910 (2010)

    Article  Google Scholar 

  3. BÖxhm, C., Klump, G., Kriegel, H.P.: XZ-ordering: a space-filling curve for objects with spatial extension. In: International Symposium on Spatial Databases, pp. 75–90 (1999)

    Google Scholar 

  4. De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1376 (2013)

    Article  Google Scholar 

  5. Dwork, C.: Differential privacy: a survey of results. In: International Conference on Theory and Applications of Models of Computation, pp. 1–19 (2008)

    Google Scholar 

  6. Fung, B.C., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), 1–53 (2010)

    Article  Google Scholar 

  7. Gramaglia, M., Fiore, M.: Hiding mobile traffic fingerprints with GLOVE. In: CoNEXT, pp. 26:1–26:13 (2015)

    Google Scholar 

  8. Gursoy, M.E., Liu, L., Truex, S., Yu, L.: Differentially private and utility preserving publication of trajectory data. IEEE Trans. Mob. Comput. 18(10), 2315–2329 (2019)

    Article  Google Scholar 

  9. He, X., Cormode, G., Machanavajjhala, A., Procopiuc, C.M., Srivastava, D.: DPT: differentially private trajectory synthesis using hierarchical reference systems. PVLDB 8(11), 1154–1165 (2015)

    Google Scholar 

  10. Jin, F., Hua, W., Francia, M., Chao, P., Orlowska, M., Zhou, X.: A survey and experimental study on privacy-preserving trajectory data publishing (2021)

    Google Scholar 

  11. Jin, F., Hua, W., Xu, J., Zhou, X.: Moving object linking based on historical trace. In: ICDE, pp. 1058–1069 (2019)

    Google Scholar 

  12. Jin, F., et al.: Trajectory-based spatiotemporal entity linking. TKDE (2020)

    Google Scholar 

  13. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity and l-diversity. In: ICDE, pp. 106–115 (2007)

    Google Scholar 

  14. Liu, X., Chen, J., Xia, X., Zong, C., Zhu, R., Li, J.: Dummy-based trajectory privacy protection against exposure location attacks. In: Ni, W., Wang, X., Song, W., Li, Y. (eds.) WISA 2019. LNCS, vol. 11817, pp. 368–381. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30952-7_37

    Chapter  Google Scholar 

  15. Liu, X., Zhao, H., Pan, M., Yue, H., Li, X., Fang, Y.: Traffic-aware multiple mix zone placement for protecting location privacy. In: INFOCOM, pp. 972–980 (2012)

    Google Scholar 

  16. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. TKDD 1(1), 3-es (2007)

    Google Scholar 

  17. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: SIGMOD, pp. 223–228 (2004)

    Google Scholar 

  18. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  19. Tu, Z., Zhao, K., Xu, F., Li, Y., Su, L., Jin, D.: Protecting trajectory from semantic attack considering k-anonymity, l-diversity, and t-closeness. IEEE Trans. Netw. Serv. Manage. 16(1), 264–278 (2019)

    Article  Google Scholar 

  20. Yuan, J., et al.: T-drive: driving directions based on taxi trajectories. In: SIGSPATIAL, pp. 99–108 (2010)

    Google Scholar 

  21. Zhu, T., Li, G., Zhou, W., Philip, S.Y.: Differentially private data publishing and analysis: a survey. TKDE 29(8), 1619–1638 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (NSFC62072125) and the Australian Research Council (DP200103650 and LP180100018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Hua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Hua, W., Jin, F., Qiu, J., Zhou, X. (2021). An Efficient Approach for Spatial Trajectory Anonymization. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13080. Springer, Cham. https://doi.org/10.1007/978-3-030-90888-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90888-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90887-4

  • Online ISBN: 978-3-030-90888-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics