Abstract
Spatial trajectories are being extensively collected and utilized nowadays. When publishing trajectory datasets that contain identifiable information about individuals, it is critically important to protect user privacy against linking attack. Although k-anonymity has been proven as a powerful tool to tackle trajectory re-identification, there still exists a significant gap in model efficiency, which severely impacts the feasibility of existing approaches for large-scale trajectory data. In this paper, we propose Gindex, a highly scalable solution for trajectory k-anonymization. It utilizes a hierarchical grid index and various optimization techniques to speed up k-clustering and trajectory merging. Extensive experiments on a real-life trajectory dataset verify the efficiency and scalability of Gindex which outperforms existing k-anonymity models by several orders of magnitude.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abul, O., Bonchi, F., Nanni, M.: Never walk alone: Uncertainty for anonymity in moving objects databases. In: ICDE, pp. 376–385 (2008)
Abul, O., Bonchi, F., Nanni, M.: Anonymization of moving objects databases by clustering and perturbation. Inf. Syst. 35(8), 884–910 (2010)
BÖxhm, C., Klump, G., Kriegel, H.P.: XZ-ordering: a space-filling curve for objects with spatial extension. In: International Symposium on Spatial Databases, pp. 75–90 (1999)
De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1376 (2013)
Dwork, C.: Differential privacy: a survey of results. In: International Conference on Theory and Applications of Models of Computation, pp. 1–19 (2008)
Fung, B.C., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. 42(4), 1–53 (2010)
Gramaglia, M., Fiore, M.: Hiding mobile traffic fingerprints with GLOVE. In: CoNEXT, pp. 26:1–26:13 (2015)
Gursoy, M.E., Liu, L., Truex, S., Yu, L.: Differentially private and utility preserving publication of trajectory data. IEEE Trans. Mob. Comput. 18(10), 2315–2329 (2019)
He, X., Cormode, G., Machanavajjhala, A., Procopiuc, C.M., Srivastava, D.: DPT: differentially private trajectory synthesis using hierarchical reference systems. PVLDB 8(11), 1154–1165 (2015)
Jin, F., Hua, W., Francia, M., Chao, P., Orlowska, M., Zhou, X.: A survey and experimental study on privacy-preserving trajectory data publishing (2021)
Jin, F., Hua, W., Xu, J., Zhou, X.: Moving object linking based on historical trace. In: ICDE, pp. 1058–1069 (2019)
Jin, F., et al.: Trajectory-based spatiotemporal entity linking. TKDE (2020)
Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity and l-diversity. In: ICDE, pp. 106–115 (2007)
Liu, X., Chen, J., Xia, X., Zong, C., Zhu, R., Li, J.: Dummy-based trajectory privacy protection against exposure location attacks. In: Ni, W., Wang, X., Song, W., Li, Y. (eds.) WISA 2019. LNCS, vol. 11817, pp. 368–381. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30952-7_37
Liu, X., Zhao, H., Pan, M., Yue, H., Li, X., Fang, Y.: Traffic-aware multiple mix zone placement for protecting location privacy. In: INFOCOM, pp. 972–980 (2012)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: privacy beyond k-anonymity. TKDD 1(1), 3-es (2007)
Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: SIGMOD, pp. 223–228 (2004)
Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 557–570 (2002)
Tu, Z., Zhao, K., Xu, F., Li, Y., Su, L., Jin, D.: Protecting trajectory from semantic attack considering k-anonymity, l-diversity, and t-closeness. IEEE Trans. Netw. Serv. Manage. 16(1), 264–278 (2019)
Yuan, J., et al.: T-drive: driving directions based on taxi trajectories. In: SIGSPATIAL, pp. 99–108 (2010)
Zhu, T., Li, G., Zhou, W., Philip, S.Y.: Differentially private data publishing and analysis: a survey. TKDE 29(8), 1619–1638 (2017)
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China (NSFC62072125) and the Australian Research Council (DP200103650 and LP180100018).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y., Hua, W., Jin, F., Qiu, J., Zhou, X. (2021). An Efficient Approach for Spatial Trajectory Anonymization. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13080. Springer, Cham. https://doi.org/10.1007/978-3-030-90888-1_44
Download citation
DOI: https://doi.org/10.1007/978-3-030-90888-1_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90887-4
Online ISBN: 978-3-030-90888-1
eBook Packages: Computer ScienceComputer Science (R0)