iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-89363-7_33
Heterogeneous Graph Attention Network for User Geolocation | SpringerLink
Skip to main content

Heterogeneous Graph Attention Network for User Geolocation

  • Conference paper
  • First Online:
PRICAI 2021: Trends in Artificial Intelligence (PRICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13032))

Included in the following conference series:

Abstract

Identifying the geographic location of online social media users, also known as User Geolocation (UG), plays an essential part in many Internet application services. One main challenge is the scarcity of users’ public geographic information. To overcome it, most works focus on user geolocation prediction with posts and interactions on social media. However, they do not consider the distinction of variant social connections, which may impair the performance of the UG models. To address this issue, we propose a multi-view model, Heterogeneous graph Attention networks for user Geolocation (HAG), which introduces the attention mechanism to mine valuable cues in social networks and text contexts jointly. In the network module, we creatively apply a heterogeneous graph to model various social interactions and introduce a heterogeneous graph attention network to learn network structure information. In the text module, we propose a context attention network to extract geo-related text information. Extensive experiments conducted on three Twitter datasets show that HAG achieves state-of-the-art performance compared to strong baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Backstrom, L., Sun, E., Marlow, C.A.: Find me if you can: improving geographical prediction with social and spatial proximity. In: WWW 2010 (2010)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. CoRR arXiv:1409.0473 (2015)

  3. Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.: Recommendations in location-based social networks: a survey. GeoInformatica 19, 525–565 (2015)

    Article  Google Scholar 

  4. Blei, D.M., Ng, A., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  5. Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (2010)

    Google Scholar 

  6. Cheng, Z., Caverlee, J., Lee, K.: A content-driven framework for geolocating microblog users. ACM Trans. Intell. Syst. Technol. 4, 2:1–2:27 (2013)

    Google Scholar 

  7. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv: Learning (2016)

  8. Davis, C., Pappa, G., de Oliveira, D.R.R., de Lima Arcanjo, F.: Inferring the location of twitter messages based on user relationships. Trans. GIS 15, 735–751 (2011)

    Google Scholar 

  9. Ding, J., Gravano, L., Shivakumar, N.: Computing geographical scopes of web resources. In: VLDB (2000)

    Google Scholar 

  10. Do, T., Nguyen, D.M., Tsiligianni, E., Cornelis, B., Deligiannis, N.: Multiview deep learning for predicting twitter users’ location. arXiv:1712.08091 (2017)

  11. Dong, Y., Hu, Z., Wang, K., Sun, Y., Tang, J.: Heterogeneous network representation learning. In: IJCAI (2020)

    Google Scholar 

  12. Eisenstein, J., O’Connor, B.T., Smith, N.A., Xing, E.: A latent variable model for geographic lexical variation. In: EMNLP (2010)

    Google Scholar 

  13. Han, B., Cook, P., Baldwin, T.: Geolocation prediction in social media data by finding location indicative words. In: COLING (2012)

    Google Scholar 

  14. Huang, B., Carley, K.M.: A hierarchical location prediction neural network for twitter user geolocation. arXiv:1910.12941 (2019)

  15. Jones, K.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 60, 493–502 (2004)

    Article  Google Scholar 

  16. McGee, J., Caverlee, J., Cheng, Z.: Location prediction in social media based on tie strength. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management (2013)

    Google Scholar 

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: EMNLP (2014)

    Google Scholar 

  19. Rahimi, A., Cohn, T., Baldwin, T.: Twitter user geolocation using a unified text and network prediction model. arXiv:1506.08259 (2015)

  20. Rahimi, A., Cohn, T., Baldwin, T.: A neural model for user geolocation and lexical dialectology. arXiv:1704.04008 (2017)

  21. Rahimi, A., Cohn, T., Baldwin, T.: Semi-supervised user geolocation via graph convolutional networks. In: ACL (2018)

    Google Scholar 

  22. Roller, S., Speriosu, M., Rallapalli, S., Wing, B., Baldridge, J.: Supervised text-based geolocation using language models on an adaptive grid. In: EMNLP-CoNLL (2012)

    Google Scholar 

  23. Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 25, 919–931 (2013)

    Article  Google Scholar 

  24. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  25. Sinnott, R.W.: Virtues of the haversine. Sky Telescope 68(2), 158–159 (1984)

    MathSciNet  Google Scholar 

  26. Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis approach. SIGKDD Explor. 14, 20–28 (2013)

    Article  Google Scholar 

  27. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endow. 4, 992–1003 (2011)

    Article  Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. arXiv:1706.03762 (2017)

  29. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., Bengio, Y.: Graph attention networks. arXiv:1710.10903 (2018)

  30. Wang, F., Lu, C.-T., Qu, Y., Yu, P.S.: Collective geographical embedding for geolocating social network users. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 599–611. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_47

    Chapter  Google Scholar 

  31. Wang, M., et al.: Deep graph library: a graph-centric, highly-performant package for graph neural networks. arXiv: Learning (2019)

  32. Wang, X., et al.: Heterogeneous graph attention network. In: The World Wide Web Conference (2019)

    Google Scholar 

  33. Wing, B., Baldridge, J.: Simple supervised document geolocation with geodesic grids. In: ACL (2011)

    Google Scholar 

  34. Wing, B., Baldridge, J.: Hierarchical discriminative classification for text-based geolocation. In: EMNLP (2014)

    Google Scholar 

  35. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.: Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  36. Zheng, C., Jiang, J.Y., Zhou, Y., Young, S., Wang, W.: Social media user geolocation via hybrid attention. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Lin, F., Dong, D., Chen, W., Liu, B. (2021). Heterogeneous Graph Attention Network for User Geolocation. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13032. Springer, Cham. https://doi.org/10.1007/978-3-030-89363-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89363-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89362-0

  • Online ISBN: 978-3-030-89363-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics