iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-87993-8_3
Robust Real-Time Computing with Chemical Reaction Networks | SpringerLink
Skip to main content

Robust Real-Time Computing with Chemical Reaction Networks

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2021)

Abstract

Recent research into analog computing has introduced new notions of computing real numbers. Huang, Klinge, Lathrop, Li, and Lutz defined a notion of computing real numbers in real-time with chemical reaction networks (CRNs), introducing the classes \(\mathbb {R}_\text {LCRN}\) (the class of all Lyapunov CRN-computable real numbers) and \(\mathbb {R}_\text {RTCRN}\) (the class of all real-time CRN-computable numbers). In their paper, they show the inclusion of the real algebraic numbers \(ALG \subseteq \mathbb {R}_\text {LCRN}\subseteq \mathbb {R}_\text {RTCRN}\) and that \(ALG \subsetneqq \mathbb {R}_\text {RTCRN}\) but leave open where the inclusion is proper. In this paper, we resolve this open problem and show \( ALG= \mathbb {R}_\text {LCRN}\subsetneqq \mathbb {R}_\text {RTCRN}\). However, their definition of real-time computation is fragile in the sense that it is sensitive to perturbations in initial conditions. To resolve this flaw, we further require a CRN to withstand these perturbations. In doing so, we arrive at a discrete model of memory. This approach has several benefits. First, a bounded CRN may compute values approximately in finite time. Second, a CRN can tolerate small perturbations of its species’ concentrations. Third, taking a measurement of a CRN’s state only requires precision proportional to the exactness of these approximations. Lastly, if a CRN requires only finite memory, this model and Turing machines are equivalent under real-time simulations.

This research supported in part by NSF grants 1900716 and 1545028.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 631–643. Springer, Heidelberg (2006). https://doi.org/10.1007/11750321_60

    Chapter  MATH  Google Scholar 

  2. Bournez, O., Fraigniaud, P., Koegler, X.: Computing with large populations using interactions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 234–246. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_23

    Chapter  Google Scholar 

  3. Bournez, O., Graça, D.S., Pouly, A.: Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length. J. ACM 64(6) (2017). https://doi.org/10.1145/3127496

  4. Cappelletti, D., Ortiz-Muñoz, A., Anderson, D.F., Winfree, E.: Stochastic chemical reaction networks for robustly approximating arbitrary probability distributions. Theoret. Comput. Sci. 801, 64–95 (2020). https://doi.org/10.1016/j.tcs.2019.08.013

    Article  MathSciNet  MATH  Google Scholar 

  5. Clamons, S., Qian, L., Winfree, E.: Programming and simulating chemical reaction networks on a surface. J. R. Soc. Interface 17(166), 20190790 (2020). https://doi.org/10.1098/rsif.2019.0790

    Article  Google Scholar 

  6. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos. Oxford University Press, Waves (1998)

    Book  Google Scholar 

  7. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_7

    Chapter  Google Scholar 

  8. Furcy, D., Summers, S.M., Wendlandt, C.: Self-assembly of and optimal encoding within thin rectangles at temperature-1 in 3D. Theoret. Comput. Sci. (2021). https://doi.org/10.1016/j.tcs.2021.02.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Hader, D., Patitz, M.J.: Geometric tiles and powers and limitations of geometric hindrance in self-assembly. Nat. Comput. 20(2), 243–258 (2021). https://doi.org/10.1007/s11047-021-09846-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Am. Math. Soc. 117, 285–306 (1965). http://www.jstor.org/stable/1994208

  11. Huang, X., Klinge, T.H., Lathrop, J.I.: Real-time equivalence of chemical reaction networks and analog computers. In: Thachuk, C., Liu, Y. (eds.) DNA 2019. LNCS, vol. 11648, pp. 37–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26807-7_3

    Chapter  MATH  Google Scholar 

  12. Huang, X., Klinge, T.H., Lathrop, J.I., Li, X., Lutz, J.H.: Real-time computability of real numbers by chemical reaction networks. Nat. Comput. 18(1), 63–73 (2018). https://doi.org/10.1007/s11047-018-9706-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Klinge, T.H., Lathrop, J.I., Lutz, J.H.: Robust biomolecular finite automata. Theoret. Comput. Sci. 816, 114–143 (2020). https://doi.org/10.1016/j.tcs.2020.01.008

    Article  MathSciNet  MATH  Google Scholar 

  14. Klinge, T.H., Lathrop, J.I., Moreno, S., Potter, H.D., Raman, N.K., Riley, M.R.: ALCH: an imperative language for chemical reaction network-controlled tile assembly. In: Geary, C., Patitz, M.J. (eds.) 26th International Conference on DNA Computing and Molecular Programming (DNA 26). Leibniz International Proceedings in Informatics (LIPIcs), vol. 174, pp. 6:1–6:22. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.DNA.2020.6

  15. Severson, E.E., Haley, D., Doty, D.: Composable computation in discrete chemical reaction networks. Distrib. Comput. (1), 1–25 (2020). https://doi.org/10.1007/s00446-020-00378-z

  16. Turing, A.M.: On computable numbers, with an application to the Entscheidungs problem. Proc. Lond. Math. Society s2–42(1), 230–265 (1937). https://doi.org/10.1112/plms/s2-42.1.230

Download references

Acknowledgments

The authors thank anonymous reviewers for useful feedback and suggestions. This research supported in part by NSF grants 1900716 and 1545028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn A. Nye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fletcher, W., Klinge, T.H., Lathrop, J.I., Nye, D.A., Rayman, M. (2021). Robust Real-Time Computing with Chemical Reaction Networks. In: Kostitsyna, I., Orponen, P. (eds) Unconventional Computation and Natural Computation. UCNC 2021. Lecture Notes in Computer Science(), vol 12984. Springer, Cham. https://doi.org/10.1007/978-3-030-87993-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87993-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87992-1

  • Online ISBN: 978-3-030-87993-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics