iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-87358-5_43
Data-Dependence Dual Path Network for Choroidal Neovascularization Segmentation in SD-OCT Images | SpringerLink
Skip to main content

Data-Dependence Dual Path Network for Choroidal Neovascularization Segmentation in SD-OCT Images

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12889))

Included in the following conference series:

Abstract

Choroidal neovascularization (CNV) is a typical clinical manifestation of age-related macular degeneration (AMD) and an important factor leading to blindness in AMD patients. Automated CNV lesion segmentation based on SD-OCT images has important research significance for clinical diagnosis. We propose a data-dependence dual path network (D3PNet) for CNV segmentation by designing an expansive path, a guidance path and a novel feature fusion strategy. In the expansive path, the data-dependent upsampling method and the proposed upsampling strategy would preserve more detail information and make the obtained features more diversified. In the guidance path, a deformable module is proposed to generate the saliency maps and lead the model focusing on the contours. Finally, we design a novel feature fusion method by regarding the saliency maps as the attention mechanism of hierarchical features to amplify the beneficial features and suppress the useless ones. Experimental results demonstrate the superior performances and reliabilities of the proposed network comparing with state-of-the-art methods.

This work was supported by National Natural Science Foundation of China under Grant No. 62072241, and in part by Natural Science Foundation of Jiangsu Province under Grants No. BK20180069, and in part by Six talent peaks project in Jiangsu Province under Grant No. SWYY-056.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lim, L.S., Mitchell, P., Seddon, J.M., Holz, F.G., Wong, T.Y.: Age-related macular degeneration. Lancet 379(9827), 1728–1738 (2012)

    Google Scholar 

  2. Grossniklaus, H.E., Green, W.R.: Choroidal neovascularization. Am. J. Ophthalmol. 137(3), 496–503 (2004)

    Google Scholar 

  3. Framme, C., Panagakis, G., Birngruber, R.: Effects on choroidal neovascularization after anti-VEGF upload using intravitreal ranibizumab, as determined by spectral domain-optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 51(3), 1671–1676 (2010)

    Article  Google Scholar 

  4. Cavallerano, A.A.: Ophthalmic fluorescein angiography. Optom. Clin. Official Publ. Prentice Soc. 5(1), 1–23 (1996)

    Google Scholar 

  5. Bruyère, E., et al.: Spectral-domain optical coherence tomography of subretinal hyperreflective exudation in myopic choroidal neovascularization. Am. J. Ophthalmol. 160(4), 749–758 (2015)

    Google Scholar 

  6. Li, Y., Niu, S., Ji, Z., Fan, W., Yuan, S., Chen, Q.: Automated choroidal neovascularization detection for time series SD-OCT images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 381–388. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_43

    Chapter  Google Scholar 

  7. Lee, N., Laine, A.F., Theodore Smith, R.: Bayesian transductive Markov random fields for interactive segmentation in retinal disorders. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich, Germany, pp. 227–230. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03891-4_61

  8. Fahmy, A.S., Abdelmoula, W.M., Mahfouz, A.E., Shah, S.M.: Segmentation of choroidal neovascularization lesions in fluorescein angiograms using parametric modeling of the intensity variation. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 665–668. IEEE (2011)

    Google Scholar 

  9. Tsai, C.-L., Yang, Y.-L., Chen, S.-J., Chan, C.-H., Lin, W.-Y.: Automatic characterization and segmentation of classic choroidal neovascularization using adaboost for supervised learning. In: IEEE Nuclear Science Symposuim & Medical Imaging Conference, pp. 3610–3612. IEEE (2010)

    Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  13. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925–1934 (2017)

    Google Scholar 

  14. Zhang, Y., et al.: MPB-CNN: a multi-scale parallel branch CNN for choroidal neovascularization segmentation in SD-OCT images. OSA Continuum 2(3), 1011–1027 (2019)

    Article  Google Scholar 

  15. Wang, J., et al.: Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning. Biomed. Opt. Express 11(2), 927–944 (2020)

    Google Scholar 

  16. Xi, X., et al.: Automated segmentation of choroidal neovascularization in optical coherence tomography images using multi-scale convolutional neural networks with structure prior. Multimedia Syst. 25(2), 95–102 (2019)

    Article  Google Scholar 

  17. Tian, Z., He, T., Shen, C., Yan, Y.: Decoders matter for semantic segmentation: Data-dependent decoding enables flexible feature aggregation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3126–3135 (2019)

    Google Scholar 

  18. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  19. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  20. Fu, J.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  21. Zaiwang, G., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zexuan Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ke, J., Ji, Z., Chen, Q., Fan, W., Yuan, S. (2021). Data-Dependence Dual Path Network for Choroidal Neovascularization Segmentation in SD-OCT Images. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12889. Springer, Cham. https://doi.org/10.1007/978-3-030-87358-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87358-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87357-8

  • Online ISBN: 978-3-030-87358-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics