iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-030-83007-6_4
MLCA: A Model-Learning-Checking Approach for IoT Systems | SpringerLink
Skip to main content

MLCA: A Model-Learning-Checking Approach for IoT Systems

  • Conference paper
  • First Online:
Software Technologies (ICSOFT 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1447))

Included in the following conference series:

  • 289 Accesses

Abstract

The Internet of Things (IoT) is a broad concept comprising a wide ecosystem of interconnected services and devices connected to the Internet. The IoT concept holds fabulous promises, but security aspects tend to be significant barriers for the adoption of large-scale IoT deployments. This paper proposes an approach to assist companies or organisations in the security audit of IoT systems. This approach called Model Learning and Checking Approach (MLCA) combines model learning for automatically extracting models from event logs, and model checking for verifying whether security properties, given under the form of generic LTL formulas hold on models. The originality of MLCA lies in the fact that auditors do not have to craft models or to be expert LTL users. The LTL formula instantiation, which makes security properties concrete, is indeed semi-automatically performed by means of an expert system composed of inference rules. The latter encode some expert knowledge, which can be applied again to the same kind of systems with less efforts. We evaluated MLCA on 5 IoT systems with security measures provided by the European ENISA institute. We show that MLCA is very effective in detecting security issues and provides results within reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, A., Bouquet, F., Fourneret, E., Le Gall, F., Legeard, B.: Model-based testing as a service for iot platforms. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 727–742. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_55

    Chapter  Google Scholar 

  2. Beschastnikh, I., Brun, Y., Abrahamson, J., Ernst, M.D., Krishnamurthy, A.: Using declarative specification to improve the understanding, extensibility, and comparison of model-inference algorithms. IEEE Trans. Softw. Eng. 41(4), 408–428 (2015). https://doi.org/10.1109/TSE.2014.2369047

    Article  Google Scholar 

  3. Beschastnikh, I., Brun, Y., Ernst, M.D., Krishnamurthy, A.: Inferring models of concurrent systems from logs of their behavior with Csight. In: Proceedings of the 36th International Conference on Software Engineering, pp. 468–479. ICSE 2014, ACM, New York, NY, USA (2014). https://doi.org/10.1145/2568225.2568246, http://doi.acm.org/10.1145/2568225.2568246

  4. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with iOCO. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24617-6_7

    Chapter  MATH  Google Scholar 

  5. Celik, Z.B., McDaniel, P., Tan, G.: Soteria: automated iot safety and security analysis. In: 2018 USENIX Annual Technical Conference (USENIX ATC 18), pp. 147–158. USENIX Association, Boston, MA (July 2018). https://www.usenix.org/conference/atc18/presentation/celik

  6. Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., Faruki, P.: Network intrusion detection for iot security based on learning techniques. IEEE Commun. Surv. Tutor. 21(3), 2671–2701 (2019). https://doi.org/10.1109/COMST.2019.2896380

  7. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

    Chapter  Google Scholar 

  8. Costin, A., Zaddach, J.: Iot malware: Comprehensive survey, analysis framework and case studies (2018)

    Google Scholar 

  9. CSA: Security guidance for early adopters of the internet of things (iot), cloud security alliance, white paper (2015)

    Google Scholar 

  10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat. No.99CB37002), pp. 411–420 (May 1999). https://doi.org/10.1145/302405.302672

  11. ENISA: Baseline security recommendations for iot in the context of critical information infrastructures, Technical report (2017). https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot

  12. ETSI: Methods for testing & specification; risk-based security assessment and testing methodologies, Technical report (2015). https://www.etsi.org/

  13. Falcone, Y., Jaber, M., Nguyen, T.H., Bozga, M., Bensalem, S.: Runtime verification of component-based systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011 - Proceedings of the 9th International Conference on Software Engineering and Formal Methods. Lecture Notes in Computer Science (LNCS), vol. 7041, pp. 204–220. Springer, Montevideo, Uruguay, November 2011. https://doi.org/10.1007/978-3-642-24690-6_15, https://hal.archives-ouvertes.fr/hal-00642969

  14. Ge, M., Hong, J.B., Guttmann, W., Kim, D.S.: A framework for automating security analysis of the internet of things. J. Netw. Comput. Appl. 83, 12–27 (2017). https://doi.org/10.1016/j.jnca.2017.01.033, http://www.sciencedirect.com/science/article/pii/S1084804517300541

  15. Gutiérrez-Madro\(\tilde{n}\)al, L., La Blunda, L., Wagner, M.F., Medina-Bulo, I.: Test event generation for a fall-detection iot system. IEEE Internet Things J. 6(4), 6642–6651 (2019). https://doi.org/10.1109/JIOT.2019.2909434

  16. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual, 1st edn., Addison-Wesley Professional, Boston (2011)

    Google Scholar 

  17. ISO: Iso/iec 27030 information technology - security techniques - guidelines for security and privacy in internet of things (iot) (2019)

    Google Scholar 

  18. Khan, M.A., Salah, K.: Iot security: review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 82, 395–411 (2018). https://doi.org/10.1016/j.future.2017.11.022, http://www.sciencedirect.com/science/article/pii/S0167739X17315765

  19. Lally, G., Sgandurra, D.: Towards a framework for testing the security of iot devices consistently. In: Saracino, A., Mori, P. (eds.) Emerging Technologies for Authorization and Authentication, pp. 88–102. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  20. Maksymyuk, T., Dumych, S., Brych, M., Satria, D., Jo, M.: An iot based monitoring framework for software defined 5g mobile networks. In: Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. IMCOM 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3022227.3022331

  21. Mariani, L., Pastore, F.: Automated identification of failure causes in system logs. In: Software Reliability Engineering, 2008. ISSRE 2008. 19th International Symposium on Software Reliability Engineering (ISSRE), pp. 117–126, November 2008. https://doi.org/10.1109/ISSRE.2008.48

  22. Matheu-García, S.N., Ramos, J.L.H., Gómez-Skarmeta, A.F., Baldini, G.: Risk-based automated assessment and testing for the cybersecurity certification and labelling of iot devices. Comput. Stand. Interfaces 62, 64–83 (2019)

    Article  Google Scholar 

  23. Matheu Garcia, S.N., Hernández-Ramos, J., Skarmeta, A.: Toward a cybersecurity certification framework for the internet of things. IEEE Secur. Priv. 17, 66–76 (2019). https://doi.org/10.1109/MSEC.2019.2904475

  24. Mohsin, M., Anwar, Z., Husari, G., Al-Shaer, E., Rahman, M.A.: Iotsat: A formal framework for security analysis of the internet of things (iot). In: 2016 IEEE Conference on Communications and Network Security (CNS), pp. 180–188, October 2016. https://doi.org/10.1109/CNS.2016.7860484

  25. Nadir, I., et al.: An auditing framework for vulnerability analysis of iot system, pp. 39–47 (June 2019). https://doi.org/10.1109/EuroSPW.2019.00011

  26. NIST: Framework for improving critical infrastructure cybersecurity, version 1.1, standards and technology, Technical report (2018). https://doi.org/10.6028

  27. OWASP: Owasp testing guide v3.0 project (2020). http://www.owasp.org/index.php/Category:OWASP_Testing_Project#OWASP_Testing_Guide_v3

  28. “Red-Hat-Software”: The business rule management system drools, March 2020. https://www.drools.org/

  29. Salva, S., Blot, E.: Verifying the application of security measures in iot software systems with model learning. In: van Sinderen, M., Fill, H., Maciaszek, L.A. (eds.) Proceedings of the 15th International Conference on Software Technologies, pp. 350–360, ICSOFT 2020, Lieusaint, ScitePress, Paris, France, 7–9 July 2020. https://doi.org/10.5220/0009872103500360

  30. Salva, S., Blot, E.: Cktail: model learning of communicating systems. In: Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2020, Prague, CZECH REPUBLIC, 5–6 May 2020

    Google Scholar 

  31. Salva, S., Blot, E.: Verifying the application of security measures in iot software systems with model learning, companion site (2020). https://perso.limos.fr/~sesalva/tools/mlc/. Accessed Oct 2020

  32. Siby, S., Maiti, R.R., Tippenhauer, N.O.: Iotscanner: Detecting and classifying privacy threats in iot neighborhoods. CoRR abs/1701.05007 (2017). http://arxiv.org/abs/1701.05007

  33. Wilson, J., Wahby, R., Corrigan-Gibbs, H., Boneh, D., Levis, P., Winstein, K.: Trust but verify: Auditing the secure internet of things, pp. 464–474 (July 2017). https://doi.org/10.1145/3081333.3081342

  34. Zhang, Z.K., Cho, M.C.Y., Shieh, S.: Emerging security threats and countermeasures in iot. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, pp. 1–6. ASIA CCS15, Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2714576.2737091

Download references

Acknowledgement

Research supported by the French Project VASOC (Auvergne-Rhône-Alpes Region) https://vasoc.limos.fr/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Salva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salva, S., Blot, E. (2021). MLCA: A Model-Learning-Checking Approach for IoT Systems. In: van Sinderen, M., Maciaszek, L.A., Fill, HG. (eds) Software Technologies. ICSOFT 2020. Communications in Computer and Information Science, vol 1447. Springer, Cham. https://doi.org/10.1007/978-3-030-83007-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83007-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83006-9

  • Online ISBN: 978-3-030-83007-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics